
1/2

April 5, 2018

The MIPS R4000, part 4: Constants
devblogs.microsoft.com/oldnewthing/20180405-00

Raymond Chen

Since the MIPS R4000 has a fixed 32-bit instruction size, it cannot have a generalized “load

32-bit immediate constant” instruction. (There would be no room in the instruction for the

opcode!)

If you look at the integer calculations available, you see that there are some ways of

generating constants in a single instruction.

Constants in the range 0x00000000 to 0x0000FFFF can be generated in one instruction by

using ORI , which treats its 16-bit immediate as an unsigned value.

 ORI rd, zero, imm16

Constants in the range 0xFFFF8000 to 0xFFFFFFFF can be generated with the ADDIU

instruction, which treats its 16-bit immediate as a signed value.

 ADDIU rd, zero, imm16

If we had a NORI instruction, then we could have used it to generate constants in the range

0xFFFF0000 to 0xFFFFFFFF :

 NORI rd, zero, imm16

But alas that instruction doesn't exist.

To build 32-bit values that cannot be created with these one-instruction tricks, you can use

the LUI instruction, which means "load upper immediate".

 LUI rd, imm16 ; rd = imm16 << 16

It loads the 16-bit immediate value into the upper 16 bits of the destination register and

zeroes out the bottom 16 bits. You can then follow this up with an ORI to finish the job:

 LUI rd, XXXX ; rd = XXXX0000

 ORI rd, rd, YYYY ; rd = XXXXYYYY

https://devblogs.microsoft.com/oldnewthing/20180405-00/?p=98445

2/2

There is a data dependency here, and you might expect a pipeline bubble because the ORI

depends on the result of the previous instruction, which won't be available until the write-

back stage four cycles later. However, the processor supports integer arithmetic forwarding:

The result of an arithmetic operation produced in the execute stage can be fed directly to the

execute stage of the next instruction, thereby avoiding a stall.

Since the constant is loaded up 16 bits at a time, when a module needs to be relocated,

moving it by a multiple of 64KB permits the fixup to be applied only to the XXXX part,

leaving the YYYY part alone. (Previous discussion.) This is a very useful property, because in

practice, these two instructions may not be adjacent to each other. The compiler might

choose to interleave other calculations to avoid the data dependency stall.

There are a few pseudo-instructions provided by the assembler for loading 32-bit constants.

 LI rd, imm32 ; rd = imm32 (by whatever means)

 LA rd, global_variable ; rd = address_of global_variable

The LI pseudo-instruction loads a 32-bit immediate into rd using a single-instruction trick

if available; otherwise, it uses the two-instruction sequence.

The LA pseudo-instruction does the same thing, but the 32-bit value comes from the

address of a global variable and is consequently subject to a relocation fixup.

Next time, we'll look at aligned memory access.

Raymond Chen

Follow

http://web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/forward.html
https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933
https://blogs.msdn.microsoft.com/oldnewthing/20031008-00/?p=42223
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

