
1/3

March 22, 2018

Stop cherry-picking, start merging, Part 9: Chasing the
commit

devblogs.microsoft.com/oldnewthing/20180322-00

Raymond Chen

Consider the following situation:

    apple

    M1   master

apple

A

  apple       apple   berry

    V1 V2 V3   victim

     

  F1 F2 F3   feature

  apple   berry   cherry

From a starting common commit A (where the line is “apple”), the master branch makes an

unrelated commit M1. Meanwhile we branch off from commit A with a new branch called

“victim”, on which unrelated commits V1 and V2 are made. From commit V1, another branch

called “feature” is created, where an unrelated commit F1 is made. After commit F1, there is

another commit F2 which changes the line from “apple” to “berry”. At this point, the feature

branch merges back to the victim branch, resulting in a merge commit V3, where the line is

now “berry”. After the merge, another commit F3 is made to the feature branch, which

changes the line from “berry” to “cherry”.

At this point, you decide that you want commit F2 (the one that changed “apple” to “berry”)

to go to master. Maybe there was some problem that F2 fixes which you thought was local to

your feature branch, but it turns out that it affected the master branch too, and now the

people who run the master branch want your temporary fix.

https://devblogs.microsoft.com/oldnewthing/20180322-00/?p=98295


2/3

So we follow our cookbook. The patch branch uses commit A as its starting point. It cherry-

picks a copy of F2 and merges it into the master branch.

    apple   berry

    M1 M2   master

apple   berry

A P   patch

  apple   apple   berry

    V1 V2 V3   ?   victim

     

  F1 F2 F3   feature

  apple   berry   cherry

But what about the other half of the merge pair? Does the patch branch merge into the

feature branch?

No, merging into the feature branch won’t help. Commit F2 has already been merged into the

victim branch, and is on its way to merging into the master branch. Any changes to the

feature branch at this point will have no effect on the payload that is already on the train.

You have to merge the patch branch into the branches that have carried the original change

closest to its destination, and the cherry-pick closest to the source. In our example, the source

is the feature branch and the destination is the master branch. The commit has merged as far

as the victim branch, so that’s where the patch needs to go. Because the point of the patch

branch is to make sure the right thing happens when the original commit (F2) and its cherry-

picked doppelgänger (M2) meet and need to merge together.

In other words, you need to catch the train.

    apple   berry

    M1 M2 M3   master

apple   berry     ↙︎

A P     ↙︎   patch

  apple   apple   berry   ↙︎

https://devblogs.microsoft.com/oldnewthing/20130820-00/?p=3453


3/3

    V1 V2 V3 V4       victim

     

  F1 F2 F3       feature

  apple   berry   cherry

The correct merge destination for the patch branch is the victim branch, resulting in commit

V4. That way, when the victim branch merges with the master branch as commit M3, commit

P becomes an eligible merge base.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

