
1/5

March 15, 2018

Stop cherry-picking, start merging, Part 4: Exploiting the
recursive merge algorithm

devblogs.microsoft.com/oldnewthing/20180315-00

Raymond Chen

The last few days have looked at the dangers of cherry-picking, both in terms of latent merge

conflicts and (even worse) missing merge conflicts, and last time, I proposed the alternative

to cherry-picking: Merging from a common branch.

Before we can explore further, we need to understand the recursive merge algorithm.

Instead of trying to explain it, I will defer to this explanation of the recursive merge

algorithm. Go read it, and then we can talk about its consequences.

Hi, thanks for coming back. Our simple example last time did not require the full power of

the recursive merge because there is still a single best common ancestor. But knowing how

the recursive merge works helps you answer some common follow-up questions.

How do I find the correct merge base?

The git merge-base master feature command will find a merge base. You can use that

as the basis for your patch branch. You can also say git merge-base -a master feature

to show all merge bases, and you can choose the one that best describes your intent.

How do I know which best describes my intent?

That’s really up to you to decide. For example, maybe one of the merge bases is a patch

branch, and the other is a regularly-scheduled merge between the master and feature branch.

If your patch is intended to build on top of the previous patch, then using the previous patch

branch describes your intent better. But if your patch is independent of the previous patch,

then using the regularly-scheduled merge describes your intent better.

What if I pick the wrong merge base, and instead pick a merge base that is not a

common ancestor?

https://devblogs.microsoft.com/oldnewthing/20180315-00/?p=98245
https://devblogs.microsoft.com/oldnewthing/20180315-00/?p=98215
https://devblogs.microsoft.com/oldnewthing/20180313-00/?p=98225
https://devblogs.microsoft.com/oldnewthing/20180314-00/?p=98235
http://blog.plasticscm.com/2011/09/merge-recursive-strategy.html

2/5

If you choose a merge base that isn’t actually a common ancestor, then when you prepare the

merges from the patch branch into the master and feature branches, one or the other merge

will encompass more than just the single commit you are trying to patch.

Let’s go back to the diagram we had at the start of yesterday’s discussion:

apple apple

A M1 master

 F1 feature

 apple

From a common ancestor A, commit F1 happens on the feature branch, and commit M1

happens on the master branch. Now you realize that you need to apply a fix to both branches.

But instead of creating your patch branch from commit A (the common ancestor), you

mistakenly create it from F1.

 apple berry

 M1 M2 master

apple berry

A P patch

 F1 F2 feature

 apple berry

From commit F1, you create a patch branch and apply a commit P to it, which contains the

desired fix. This branch is then merged into the master branch (creating commit M2) and

into the feature branch (creating commit F2).

This diagram is identical to the second diagram from last time, except that the patch commit

P is based off commit F1 rather than commit A.

What happens?

What happens is that the merge into the master branch includes commit F1, which is not

what you intended.

3/5

If you’re using a pull request, then the list of encompassed commits in the pull request will be

longer than just one commit, and the diff of the pull request will show unwanted changes.

That is your signal that something funny is going on. If you’re doing straight merges from the

command line, you’ll find that the history for the merge into the master branch pulled in

more than just one change, and the diff of the merge shows that the merge into the master

branch contained both the desired changes from commit P as well as some unwanted

changes from commit F1.

You can protect against this by doing

git log master..patch

git log feature..patch

and verifying that only one commit (namely, your patch) comes out of each log query.

What if I pick the wrong merge base, and instead pick a merge base that is a

common ancestor, but not the most recent one?

Suppose that instead of choosing the most recent common ancestor, you choose an older one.

 apple berry

 M1 M2 master

 apple berry

 A P patch

B F1 F2 feature

apple apple berry

From a common ancestor A, commit F1 happens on the feature branch, and commit M1

happens on the master branch. We create a patch branch not from commit A, but from an

even older commit B that is an ancestor of commit A. We then merge that patch branch into

the master and feature branches.

What happens is that the eventual merge of the master and feature branch will have multiple

best common ancestors. One is the merge base that would have been selected if you had

never created a patch branch (A). The other is the patch branch that you created (P). The

recursive merge algorithm will merge these two branches together, the result of which is…

surprise! the version of the patch branch you would have gotten if you had created it from the

correct merge base in the first place.

4/5

In other words, it doesn’t matter which common ancestor you pick, as long as you don’t pick

one so far back that the merge with the most recent common ancestor will encounter a merge

conflict. But you’re unlikely to do that because that would mean that the merges into the

current heads of the master and feature branches would also encounter merge conflicts, and

that would tell you that something is wrong.

The above result is an important one, because it means that you could choose as your

common ancestor not the most recent common ancestor, but in fact the oldest common

ancestor that the patch still applies to. In other words, go back to the commit that introduced

the code you want to change. That commit is in both the master and feature branches by

virtue of the fact that the problem exists in both branches. Apply your patch to that commit,

and then merge the patch into the master and feature branches. From the graph, it looks like

you had a side branch that immediately fixed the problem, but you merely took a long time

before deciding to merge that fix back into the master and feature branches.

Having a patch branch ready with the fix is handy when we get to the next question.

Note that you might choose an older common ancestor on purpose, if it better describes your

intent. For example, in the above diagram, commit A might be a commit from a patch

branch, whereas commit B is a regularly-scheduled merge between the master and feature

branches. As with the case of multiple merge bases, you can choose the commit that best

expresses what you’re trying to do with your patch. If your patch builds on top of the work in

commit A, then creating your patch branch from commit A describes your intent best. On the

other hand, if your patch is independent of the previous patch, then creating your patch

branch from commit B makes it clearer that your patch is unrelated to the previous one.

What if I have multiple branches that I need to fix?

As we discovered in the previous question, it doesn’t matter which common ancestor you use,

as long as it’s a common ancestor. So create a patch branch that is based on an old common

ancestor, old enough to be in all the branches you want to apply the fix to. Say, the commit

that introduced the line of code you want to modify with the patch. Tell anyone who wants to

pick up the fix, “Merge the patch branch into your branch.”

Instead of telling everybody to cherry-pick the fix, tell them to merge the patch branch. This

is a branch specially crafted so that merging it picks up exactly one commit, namely the fix.

And if everybody merges the same patch branch, then they won’t encounter conflicts when

they merge with each other.

What if I need to share multiple changes between the branches?

5/5

Maybe you need multiple changes rather than a single change. For example, you created a

patch branch with the fix, then discovered a problem with the fix, so you have another

commit that fixes the fix.

No problem. In your patch branch, put all the changes you want to share. Once you have your

entire payload sitting in the patch branch, you can merge it into the master and feature

branches.

What if I later realize I need to merge another fix?

What if you’re having a really bad day, and after you merge the patch branch into the master

and feature branches, you discover another problem that forces you to disable a different part

of the feature. Is it safe to create a second patch branch and follow the same exercise? Does

the second patch branch have to be based on the first patch branch?

Again, through the magic of the recursive merge algorithm, it doesn’t matter which way you

do it. Whether your second patch branch is based on the first patch branch or whether it’s an

independent branch turns out to be irrelevant, because the recursive merge algorithm will

merge all the patch branches together anyway. The decision to base it on the previous patch

branch should be based on what is easier for others to understand.

Okay, those are the follow-up questions that can be answered by applying your

understanding of the recursive merge algorithm. Next time, we’ll look at follow-up questions

that can be answered by applying your understanding of the three-way merge algorithm.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20180316-00/?p=98255
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

