
1/3

February 9, 2018

Optimizing BitBlt by generating code on the fly
devblogs.microsoft.com/oldnewthing/20180209-00

Raymond Chen

The initial implementation of the BitBlt function in 16-bit Windows didn’t have any

special tricks. It was static code that supported the sixteen raster operations that involve a

source and destination.

The second version of BitBlt generated code on the fly. Specifically, the BitBlt function

generated code onto the stack which performed the block transfer with the appropriate

operation, and then called the code as a subroutine.

This was clearly the days before Data Execution Prevention (DEP).

Internally, the function that did this was called CBlt , short for “compiled block transfer.”

The generated code followed a template, hard-coding the array bounds and bitmap stride

into the generated code, thereby transforming variables into constants, which avoided having

to consume a register (or worse, accessing memory) to check the value.

The code generator emitted code to loop over the source and destination bitmaps, taking care

to check for overlap between the source and destination and looping in the correct direction

accordingly. The code generator also had to generate code to handle the so-called “phase

mismatch” in the case where the source and destination do not start at the same bit offset

within the starting byte. And of course to handle the case where the starting or ending pixels

are not on a byte boundary. And then there was code to handle the case of interlaced

displays, where the way to move from one scan line to the next depends on whether you’re

starting from an odd-numbered or even-numbered scan line.¹ Basically, all the stuff that you

need to worry about when doing BitBlt , but instead of doing it, you are generating code

that does it.

Inside the loop body, the code generator inserted a code fragment to perform the block

transfer operation. For example, if the operation was SRCERASE , then the generated code

would do something like

https://devblogs.microsoft.com/oldnewthing/20180209-00/?p=97995

2/3

 ; By this point, the source is in AL

 ; and the destination is in ES:[DI].

 not al

 and al, es:[di]

 ; On exit from the fragment, the result is in AL.

The fragment is where the donuts are made. All the rest of the generated code is just

scaffolding so we can get to this point. And as you can see, the fragment is usually rather

anticlimactic.

The code generator had a table of sixteen fragments, so it knew what instructions to place

inside the loop body.

The third version of BitBlt , known as SuperBlt at the time, extended its support to three-

parameter raster operations (source, pattern, and destination). There are 256 possible

operations, but to avoid exploding the number of fragments, there was some consolidation.

For example, if two raster operations are the same except that one is the bitwise inverse of

the other, then the same fragment was used for both, and the compiler appended a not al

to one of them.

The fragment table also noted which inputs were required by the operation. For example, the

DSTINVERT operation doesn’t use the source at all, so the code generator can avoid

generating the code to loop through the source bytes and load them into the al register. No

point calculating values you’re never going to use.

The result of all this compilation was around 120 instructions of machine code to perform a

block transfer operation. Each of these custom-generated subroutines handled a particular

bitmap size, overlap scenario, phase match, block transfer operation, and interlace state.

The fourth version of BitBlt added support for blitting between color bitmaps and

monochrome bitmaps. So now you had color conversion as another input to the code

generator.

In Windows 3.0, the fifth version added support for bitmaps larger than 64KB. The code

generator took advantage of 32-bit registers so that it could index into the entire memory

block at once, instead of having to break it up into 64KB pieces.

In Windows 95, the code generator got crazy and used the esp register as a general-purpose

register. The 80386 has only eight 32-bit registers, so gaining an extra register was a big

help. The code doesn’t actually use the stack, so the fact that the esp register doesn’t point

to the stack isn’t a problem. (Note that normal Win32 code can’t get away with this trick

https://www.youtube.com/watch?v=petqFm94osQ
https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933
https://blogs.msdn.microsoft.com/oldnewthing/20171113-00/?p=97386

3/3

because the stack pointer must remain valid for stack unwinding purposes. But this was

special code running under special conditions, and it was in cahoots with the kernel so the

kernel didn’t freak out when it saw this wacko stack.)

Uh oh, but this means that you can’t use the esp register to access your local variables. No

problem! We’ll run the code on a custom stack, too, so that our local variables are at fixed

offsets relative to the stack selector register.

Nearly all of GDI was written in assembly language in versions of Windows up to and

including the Windows 95 family. In that era, being able to not only read but also write

assembly language was a core developer skill.

Bonus reading: The idea of generating block transfer code on the fly has been around for a

while. (If impatient, skip to the bottom of page 43.)

¹ The way the code managed this was rather clever. It calculated the stride to go from an odd-

numbered scan line to an even-numbered scan line, and then it calculated the stride to go

from an even-numbered scan line to an odd-numbered scan line. It then xor’d the two values

together to create a toggle value. After each scan line was complete, the current stride was

applied, and then the stride was xor’d with the toggle value. This causes the stride to flip back

and forth between the two desired values.

Raymond Chen

Follow

https://pdos.csail.mit.edu/~rsc/pike84bitblt.pdf
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

