
1/2

January 25, 2018

How can I reserve a range of address space and create
nonzero memory on demand when the program reads or
writes a page in the range?

devblogs.microsoft.com/oldnewthing/20180125-00

Raymond Chen

Last time, we looked at how you can reserve a range of address space and receive

notifications when the program first reads or writes a page in the range, in the case where

you merely want the notification, or maybe just want to commit blank pages. But what if you

want to create nonzero memory instead of just committing blank pages?

For example, you might want to simulate a memory-mapped file, except that instead of being

backed by a file, it’s backed by some algorithmically generated data. For example, you might

be doing pointer swizzling, wherein a large database is incrementally loaded into memory as

pages of it are faulted in. As each page faults in, each pointer on the page is updated

(swizzled) to point to an as-yet unused page in the reserved region. When an access violation

occurs in a reserved page, the code looks up which database page that reserved page

corresponds to, loads the page from the database, and then updates each pointer on that

page to point to an as-yet unused page. From the program’s point of view, the database is

being paged in on demand.

Pointer swizzling is particularly handy when accessing a very large database on a 32-bit

system, because you don’t have to memory-map the entire database. The memory usage is

the number of pages actually faulted in, and the address space usage is the number of pages

referenced by faulted-in pages.

You would handle an access violation on a reserved page by allocating a page of data at the

desired location, reading the raw data from the database, and swizzling the pointers. You

then mark the page read-only and restart the faulting instruction. (“Look again, and you

might find a surprise!”)

If you take a write protection violation, then you mark the page as dirty in your data

structures, remove write protection from the page, and restart the faulting instruction. When

the database file is closed, you unswizzle all the pointers in the dirty pages and write them

back to the database.

https://devblogs.microsoft.com/oldnewthing/20180125-00/?p=97885


2/2

As with the case discussed last time, you can choose between a structured exception handler

(if you need this only for the duration of a function call) or a vectored exception handler

(which remains active until explicitly removed). In the case of a swizzled database, you

probably would install a vectored exception handler when the database is opened and remove

it when the database is closed.

And as with the case discussed last time, you have to watch out for passing these buffers

directly to kernel mode, because kernel mode will reject them as invalid. You’ll have to turn

them from pretend memory to real memory before using them as the source or destination

buffer of a kernel mode function.

The nastier problem is multithreading. If one thread chases a swizzled pointer to a reserved

page, your code will start filling the page with data. During that time, another thread can

chase the same pointer, or another swizzled pointer to the same page, and start accessing the

memory while the first thread is still getting the memory ready.

We’ll take up this topic next time.

Raymond Chen

Follow







https://blogs.msdn.microsoft.com/oldnewthing/20180126-00/?p=97905
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

