
1/2

January 24, 2018

How can I reserve a range of address space and receive
notifications when the program first reads or writes a
page in the range?

devblogs.microsoft.com/oldnewthing/20180124-00

Raymond Chen

A customer wanted to reserve a range of address space and be notified when the program

first reads or writes a page in the range.

It’s not clear what the customer’s goal is, but if it’s true that all they want is to be notified of

the access, without affecting the underlying memory, then it’s not so hard.

In the simplest case, you can mark the page as PAGE_ GUARD . This will raise a guard page

violation the first time the program reads from or writes to the memory. You can log

whatever you need and then indicate that you handled the exception and want execution to

continue as if no exception had occurred. The guard page violation is raised only once per

page. After it’s done, the memory behaves normally, either as a normal read-only page or a

normal read-write page, depending on how you allocated the memory.

In the more complicated case where you want to detect reads and writes separately, you can

mark the page as PAGE_ NOACCESS . If that’s all you do, then this will raise an access

violation every time the program reads from or writes to the memory. But what you can do is

to inspect the exception reason, and if it’s “read”, then change the protection from

PAGE_ NOACCESS PAGE_ READONLY to upgrade the page from no-access to read-only. If

it’s “write”, then upgrade all the way to PAGE_ READWRITE . Log the information, change the

page protections, and indicate that execution should continue.

Watch out for the multithreaded case, if two threads take access violations simultaneously on

the same page.

If you want this fancy memory management only for the duration of a function call, then you

can install a structured exception handler around the code whose access is being monitored.

If you need this beyond the scope of a single function, then you can use a vectored exception

handler.

https://devblogs.microsoft.com/oldnewthing/20180124-00/?p=97875

2/2

A variation of this is where you want to commit empty pages on demand. In that case, you

the same technique that the FormatMessage function used to use: Reserve a bunch of

memory, and then install an exception handler that creates the memory on demand in

response to an accss violation on one of the pages you’re managing.

There is a gotcha here: Your custom page fault handler will be called only for page faults

incurred by user mode. If the program passes a buffer to kernel mode (say as the source of a

WriteFile or the destination of a ReadFile), then kernel mode will complain that the

buffer is invalid because not all the pages are committed with appropriate access. To work

around this, you’ll have to manually fault in the pages with the appropriate protections

before using then as source or destination buffers in kernel calls.

Okay, so this works in the case where the program merely wants to be notified of the access,

or if it wants to swoop in and allocate blank pages. Next time, we’ll look at a more

complicated scenario.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

