
1/2

January 18, 2018

A helper template function to wait for WaitOnAddress in a
loop

devblogs.microsoft.com/oldnewthing/20180118-00

Raymond Chen

The WaitOnAddress function suffers from the problem of spurious wake-ups. This means

that most uses of the WaitOnAddress function are of the form “while the value is bad, wait

for it to change.”

There is a subtlety here, because you have to capture the value, then make your decision

based on the captured value, and if you decide that you want to wait some more, you need to

pass the captured value to WaitOnAddress . The extra capturing is necessary to avoid a race

condition if you determine that the value is bad, but before you can call WaitOnAddress ,

the value becomes good.

Here’s a simple helper function to encapsulate the loop:

template<typename T, typename TLambda>

void WaitForValueByAddress(T& value, TLambda&& is_okay)

{

 auto capturedValue = value;

 while (!is_okay(capturedValue)) {

 WaitOnAddress(&value, &capturedValue, sizeof(value), INFINITE);

 capturedValue = value;

 }

}

The assumption here is that T is a simple value type like int32_t . If you pass a funky

class, then we’re going to be copying it, which is probably a bad idea given that the variable is

going to be asynchronously modified (possibly while we are copying it).

The predicate evaluates the value: Return true if it acceptable, or return false to reject it

and wait some more.

Here’s a sample usage:

https://devblogs.microsoft.com/oldnewthing/20180118-00/?p=97825
https://blogs.msdn.microsoft.com/oldnewthing/20160826-00/?p=94185

2/2

int32_t someValue;

void WaitForValueToBecomeZero()

{

 WaitForValueByAddress(someValue, [](auto&& v) { return v == 0; });

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

