
1/2

January 5, 2018

How do I get the computer’s serial number? Consuming
Windows Runtime classes in desktop apps, part 2:
C++/CX

devblogs.microsoft.com/oldnewthing/20180105-00

Raymond Chen

Continuing our series on getting the computer’s serial number in desktop apps in various

languages, next up is C++/CX.

From Visual Studio, create a new C++ Console Application that goes like this:

#include <windows.h>

#include <stdio.h> // Horrors! Mixing C and C++!

[Platform::STAThread]

int __cdecl wmain(int, wchar_t**)

{

 CCoInitialize init;

 auto serialNumber = Windows::System::Profile::SystemManufacturers::

 SmbiosInformation::SerialNumber;

 wprintf(L"Serial number = %ls\n", serialNumber->Data());

 return 0;

}

Before building, right-click the Project in Visual Studio and select Properties, and then make

these changes:

Configuration Properties, C/C++, General, Additional #using Directories: Add these

two directories, adjusting as appropriate for where you installed Visual Studio and the

Windows SDK.

C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\vcpackages

(so the compiler can find platform.winmd)

C:\Program Files (x86)\Windows Kits\10\UnionMetadata\10.0.16299.0

(so the compiler can find windows.winmd)¹

Configuration Properties, C/C++, General, Consume Windows Runtime Extension: Set

to Yes (/ZW).

https://devblogs.microsoft.com/oldnewthing/20180105-00/?p=97725
https://devblogs.microsoft.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/

2/2

Configuration Properties, C/C++, Code Generation, Enable Minimal Rebuild: Set to No

(/Gm-).

Configuration Properties, Linker, Inputs, Additional Dependencies: add

windowsapp.lib .

Okay, now you can build and run the program.

Consuming Windows Runtime objects in C++/CX is more convenient than accessing them

raw, but it is a nonstandard Microsoft extension.

You don’t have to build your entire application in C++/CX. You can write part of it in plain

C++, and part of it in C++/CX, and the link the two pieces together. The Casting page on

MSDN explains how to convert between a hat-pointer and a regular pointer.

Okay, so setting up the project was kind of ugly, but that’s okay, because things will get better

before they get better. Up next is C++/WinRT.

¹ There are two copies of windows.winmd , a good one in the directory I gave above, and a

bad one in the directory UnionMetadata\ Facade . If you use the bad one, you get an

internal compiler error. Larry Osterman tried to explain to me what the bad copy in Facade

was for, but all I heard was the wah-wah of Charlie Brown’s teacher.

Raymond Chen

Follow

https://docs.microsoft.com/en-us/cpp/cppcx/casting-c-cx
https://blogs.msdn.microsoft.com/larryosterman/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

