
1/3

December 21, 2017

What’s the difference between VARIANT and
VARIANTARG?

devblogs.microsoft.com/oldnewthing/20171221-00

Raymond Chen

One of my colleagues asked me, “What’s the difference between VARIANT and

VARIANTARG ?”

If you look at the definitions in the oaidl.h header file, you’ll see that VARIANTARG is just

an alias for VARIANT .

typedef VARIANT VARIANTARG;

typedef VARIANT *LPVARIANTARG;

“Why have two names for the same thing?”

The two structures are physically identical, but the rules surrounding them are different.

This is mentioned rather opaquely in the documentation for VARIANT:

VARIANTARG describes arguments passed within DISPPARAMS, and VARIANT to specify
variant data that cannot be passed by reference.

When a variant refers to another variant by using the VT_VARIANT | VT_BYREF vartype, the
variant being referred to cannot also be of type VT_VARIANT | VT_BYREF. VARIANTs can
be passed by value, even if VARIANTARGs cannot.

The first sentence says that you use VARIANTARG as part of a DISPPARAMS , which is the

structure used to pass parameters (also known as “arguments”) to methods of dispatch

interfaces.

The second sentence is not relevant to the discussion. It says that only one level of pointer

chasing is allowed. You can’t send the method on a wild goose chase where you pass a variant

that says “The real data is over there, in that other variant”, and then have the second variant

say, “Ha ha, fooled, you. The real data is over there in that other other variant.”

https://devblogs.microsoft.com/oldnewthing/20171221-00/?p=97625
https://msdn.microsoft.com/en-us/library/windows/desktop/ms221627(v=vs.85).aspx

2/3

The third sentence starts to hint at the underlying issue. It says that VARIANT s can be

passed by value, but VARIANTARG s cannot.

Interesting, but no real insight as to why you can pass VARIANT by value but not

VARIANTARG .

There’s another MSDN page titled VARIANT and VARIANTARG. Maybe that’ll help us get to

the bottom of the mystery.

The VARIANT type cannot have the VT_BYREF bit set.

Aha, that’s the difference. The VARIANTARG structure is allowed to say, “Hey, I don’t contain

the data you want, but you can look over there for it.” For example, it could set its variant

type to VT_BYREF | VT_I4 to say, “There is an integer, but it’s not stored in the lVal

member. Instead, you have to go to the plVal member, which is a pointer to the integer you

want.”

This explains why VARIANT can be copied, but VARIANTARG cannot: If you try to copy a

VARIANTARG that uses VT_BYREF , you are just copying the raw pointer to the data, not the

data itself. You have no control over the memory being pointed to, so you have no way to

prevent it from being freed.

Using VT_BYREF is allowed in a DISPPARAMS because the caller assumes the responsibility

of keeping the pointed-to data valid for the duration of the method call. That’s just one of the

basic ground rules of programming, specifically the stability requirement. The caller has to

wait for the method call to return before it can free the memory pointed to by the

VARIANTARG .

Okay, so what if you’re implementing a method and you want to make a copy of the

VARIANTARG ? How do you deal with the VT_BYREF ?

This is where the VariantCopyInd function comes into play. This function takes a

VARIANTARG , possibly with VT_BYREF , and converts it into a VARIANT , with all

VT_BYREF removed. It does this by chasing the pointer one level and copying the value back

into the VARIANT . For example, if the VARIANTARG were a VT_BYREF | VT_I4 , then the

VariantCopyInd function would follow the plVal pointer, read the integer stored there,

and copy it to the output VARIANT ‘s lVal member, resulting in a simple VT_I4 .

The “Ind” therefore stands for “Indirect”. The VariantCopyInd function indirects through

the pointer hiding inside the VT_BYREF .

Well, that was a strange bit of spelunking.

Raymond Chen

Follow

https://msdn.microsoft.com/en-us/library/ms891678.aspx
https://blogs.msdn.microsoft.com/oldnewthing/20060320-13/?p=31853
https://msdn.microsoft.com/en-us/library/windows/desktop/ms221184(v=vs.85).aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

