
1/2

December 7, 2017

Knowing just enough about debugging IRPs to chase the
problem out of the I/O stack

devblogs.microsoft.com/oldnewthing/20171207-00

Raymond Chen

One of my colleagues was running a tool that wound up stuck on FlushFileBuffers . Since

this was a hang in the I/O stack, a kernel dump is more useful.

I used the !irp debugger command to look at the I/O request that got stuck:

0: kd> !irp 0xffffab0c`fced9340 1

Irp is active with 2 stacks 2 is current (= 0xffffab0cfced9458)

No Mdl: No System Buffer: Thread ffffab0d15731080: Irp stack trace.

 cmd flg cl Device File Completion-Context

[N/A(0), N/A(0)]

 0 0 00000000 00000000 00000000-00000000

 Args: 00000000 00000000 00000000 00000000

>[IRP_MJ_FLUSH_BUFFERS(9), N/A(0)]

 0 1 ffffab0cdf855060 ffffab0ce2c6eef0 00000000-00000000 pending

 \FileSystem\Npfs

 Args: 00000000 00000000 00000000 00000000

I don’t know what any of this means, but somebody else did.

The file system is Npfs , which is the “named pipe” file system. This means that the code is

trying to flush a named pipe, and the process on the other end of the pipe is not responding.

With the help of debugger documentation I dumped the file object:

https://devblogs.microsoft.com/oldnewthing/20171207-00/?p=97536
https://en.wikipedia.org/wiki/MJ#People
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/-fileobj

2/2

0: kd> !fileobj ffffab0ce2c6eef0

\contoso44268

Device Object: 0xffffab0cdf855060 \FileSystem\Npfs

Vpb is NULL

Flags: 0x40082

 Synchronous IO

 Named Pipe

 Handle Created

File Object is currently busy and has 1 waiters.

FsContext: 0xffffe30b60eefe70 FsContext2: 0xffffe30b23b593d3

Private Cache Map: 0x00000001

CurrentByteOffset: 0

I don’t know what any of this means either, but the name of the named pipe is apparently

contoso44268 .

We provided this information to the owner of the tool, and they recognized it as a named pipe

they use to communicate between the tool and a helper process, and the helper process in

turn satisfies the pipe request by contacting a Web service.

The owner of the tool requested some diagnostic logs to figure out why the named pipe got

stuck. But that’s not the point of the story today. The point here is just being able to chase the

stuck I/O out of kernel mode back into an application so the forward progress can be made.

Bonus reading: More on debugging the I/O system:

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

