
1/3

October 20, 2017

On the gradual improvements in how the system deals
with the failure to initialize a critical section

devblogs.microsoft.com/oldnewthing/20171020-00

Raymond Chen

The documentation for the InitializeCriticalSection function says

Return value

This function does not return a value.

Windows Server 2003 and Windows XP: In low memory situations, InitializeCriticalSection
can raise a STATUS_ NO_ MEMORY exception. This exception was eliminated starting with
Windows Vista.

In earlier versions of Windows, the InitializeCriticalSection function could fail in low

memory conditions, in which case it raised a STATUS_ NO_ MEMORY exception.

Wait, let’s go back even further.

In very old versions of Windows, the InitializeCriticalSection function could fail in

low memory conditions, in which case it raised a STATUS_ NO_ MEMORY exception.

However, the code wasn’t particularly careful about exactly when it raised the exception, and

it turns out that it didn’t bother to completely unwind the partial-initialization-so-far before

raising the exception. This means that if a program tried to recover from a failed

InitializeCriticalSection by catching the STATUS_ NO_ MEMORY exception, it still

experienced a memory leak.

Yes, it’s rather ironic that if the kernel couldn’t initialize the critical section due to low

resources, it leaked memory, which made the low resource situation even worse.

There was a similar sad story with EnterCriticalSection and even LeaveCritical‐

Section : Under low resource conditions, those functions could fail and raise a

STATUS_ NO_ MEMORY exception. Those are even worse because by the time you get the

exception, it’s probably too late to back out of whatever you were doing. I mean, maybe if

https://devblogs.microsoft.com/oldnewthing/20171020-00/?p=97256
https://msdn.microsoft.com/library/windows/desktop/ms683472(v=vs.85).aspx

2/3

you’re really clever, you can recover from a failed EnterCriticalSection by abandoning

the operation (and undoing all the work done so far), but I can’t think of any case where a

program could do anything reasonable if LeaveCriticalSection fails.

And as Michael Grier noted, if LeaveCriticalSection raised an exception, not only wasn’t

there anything you could reasonably do about it, but it also left the critical section in a

corrupted state!

The only thing you can do is to just crash the process before things get any worse.

I think it was in Windows XP that the kernel folks fixed the code so that it cleaned up the

partially-initialized critical section before raising the STATUS_ NO_ MEMORY exception, so

that a program could safely catch the exception and not leak memory. I believe they also fixed

it so that the EnterCriticalSection and LeaveCriticalSection functions would not

raise exceptions. If called properly, then they always succeeded. So at least those weird cases

of “raising an exception and leaving the critical section fatally corrupted” went away.

And then in Windows Vista, the kernel folks decided to get rid of the problem once and for all

and remove all the failure cases from all the critical section functions. The Initialize‐

CriticalSection and InitializeCriticalSectionAndSpinCount functions always

succeeded. The EnterCriticalSection and LeaveCriticalSection functions would

not raise exceptions when used properly.

So for over a decade now, the InitializeCriticalSection and InitializeCritical‐

SectionAndSpinCount functions never fail. This means that (assuming they are called

properly), InitializeCriticalSection never raises a STATUS_ NO_ MEMORY

exception. The InitializeCriticalSectionAndSpinCount function a return value that

says whether it succeeded, but it always succeeds and returns a nonzero value. The return

value is now superfluous.

Bonus chatter: The documentation for the InitializeCriticalSectionAndSpinCount

function says

Return value

This function always returns a nonzero value.

Windows Server 2003 and Windows XP: If the function succeeds, the return value is nonzero.
If the function fails, the return value is zero (0). To get extended error information, call Get-
LastError. This behavior was changed starting with Windows Vista.

I’m told that some people come away from the documentation still worried about the

possibility that the InitializeCriticalSectionAndSpinCount might fail on Windows

Vista and later. They see that on Windows Server 2003 and Windows XP, the function tells

you whether or not it succeeded, but on Windows Vista it always reports success. “That

https://devblogs.microsoft.com/oldnewthing/#comment-1150233
https://msdn.microsoft.com/library/windows/desktop/ms683476(v=vs.85).aspx

3/3

means that if the function fails, Windows Vista will lie to me and report success even though

it failed!” No, that’s not what it’s saying. It’s saying that starting in Windows Vista, the

function never fails.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

