
1/2

September 22, 2017

What does it mean when I get an access violation at a
very low address when entering a critical section?

devblogs.microsoft.com/oldnewthing/20170922-00

Raymond Chen

Warning: This article talks about implementation details which can change at any time. The

information provided is for debugging and diagnostic purposes only.

A customer found that their server program occasionally crashes in the internal function

RtlpWaitOnCriticalSection trying to dereference the address 0x00000014 .

7789dde3 ff4014 inc dword ptr [eax+14h]

The dereference was due to a null pointer in the EAX register. This was particularly difficult

to debug because the problem usually didn’t surface until the program had been running

continuously for a week or more.

The customer chased the null pointer backwards and found that it came from the Debug‐

Info field of the RTL_ CRITICAL_ SECTION structure.

typedef struct _RTL_CRITICAL_SECTION

{

 // value in memory:

 PRTL_CRITICAL_SECTION_DEBUG DebugInfo; // 0x00000000

 LONG LockCount; // 0xFFFFFFFC

 LONG RecursionCount; // 0x00000000

 PVOID OwningThread; // 0x00000000

 PVOID LockSemaphore; // 0x00005CDC

 ULONG SpinCount; // 0x00000000

} RTL_CRITICAL_SECTION, *PRTL_CRITICAL_SECTION;

The customer confirmed that, yes, the DebugInfo of the critical section they were trying to

enter was indeed null.

Although the customer didn’t do it in their application (at least not knowingly), they did try a

test application which passed the CRITICAL_ SECTION_ NO_ DEBUG_ INFO flag to the

InitializeCriticalSectionEx function, in the hopes of inducing a null pointer for the

DebugInfo , but it didn’t work. When initialized in that way, the DebugInfo was set to

0xFFFFFFFF .

https://devblogs.microsoft.com/oldnewthing/20170922-00/?p=97065

2/2

Is it possible that this is a critical section that was initialized with the traditional

InitializeCriticalSection function, but the attempt to allocate the debug info failed, so

the kernel left it null?

No, that’s not why the the DebugInfo is null. If a critical section has no debug info (either

explicitly requested as such with the CRITICAL_ SECTION_ NO_ DEBUG_ INFO flag, or

because the system couldn’t allocate any debug info), then the DebugInfo is set to the

special value 0xFFFFFFFF . The DebugInfo for a valid initialized critical section is never

null.

So what does it mean when the DebugInfo is null? The most likely reason is that you are

using an uninitialized critical section. Either you never initialized it, or you deleted an

initialized critical section (which resets it back to the uninitialized state).

Other evidence that you have an uninitialized critical section is that the critical section is

locked, yet has no owner. Furthermore, the spin count is zero, which occurs only on

uniprocessor systems. I suspect the server they are running the program on has more than

one core. (Heck, my phone has more than one core.)

Bonus reading: Displaying a critical section in the debugger.

Related: I hope you werent using those undocumented critical section fields.

Raymond Chen

Follow

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/displaying-a-critical-section
https://blogs.msdn.microsoft.com/oldnewthing/20050701-11/?p=35123
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

