
1/2

September 13, 2017

What is the correct way of using the string buffer
returned by the WindowsPreallocateStringBuffer
function?

devblogs.microsoft.com/oldnewthing/20170913-00

Raymond Chen

The most common way of creating an HSTRING is to call WindowsCreateString, but there

is also a two-phase creation pattern: First you call WindowsPreallocateStringBuffer to

create a buffer for a future string. You then fill the buffer with stringy goodness and then call

WindowsPromoteStringBuffer to convert it to a real HSTRING . (Or you can call

WindowsDeleteStringBuffer to change your mind and pretend it never happened.)

The rule for managing the buffer returned by WindowsPreallocateStringBuffer is that

you are expected to write exactly length code units into the buffer. No more. No less. The

system already put a terminating null after the end of the buffer; your job is to fill the buffer

with the string contents.

For example, if you want to use two-phase creation to create the string hello , you would

call WindowsPreallocateStringBuffer and pass length = 5 . Into the resulting buffer,

you write the characters h , e , l , l , and o , and that’s all. The system already stored

the terminating null.

This particular formulation of the rules is important in the case that length = 0 .¹ Since

the representation of an HSTRING of length zero is the null pointer, there is no actual buffer.

What happens is that the system uses a single preallocated buffer (consisting of just a null

terminator) to represent the buffer for all zero-length strings. If you call Windows‐

PreallocateStringBuffer , you get a pointer to that preallocated buffer.² Since you passed

a length of zero, you are expected to write zero characters to the buffer; in other words, you

are expected to do nothing at all with the buffer.

And of course since HSTRING s are immutable, your permission to modify the buffer ends

once you promote the buffer to a string. Once it’s been promoted to a string, the entire buffer

becomes read-only.

https://devblogs.microsoft.com/oldnewthing/20170913-00/?p=97015
https://blogs.msdn.microsoft.com/oldnewthing/20160615-00/?p=93675

2/2

¹ Another way of interpreting this corner case is to say “Don’t bother calling Windows‐

PreallocateStringBuffer with a string of length zero. Otherwise, go ahead and call it, and

you can write that null terminator if you like.”

² Arguably, to accommodate the possibiltiy of somebody writing that null terminator, it

should return a preallocated writable buffer just large enough to hold that null terminator. It

could be the high 16 bits of the length field itself!

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

