
1/2

August 9, 2017

The Alpha AXP, part 3: Integer constants
devblogs.microsoft.com/oldnewthing/20170809-00

Raymond Chen

The Alpha AXP does not have a “load immediate 32-bit integer” instruction. If you need to

load an immediate 32-bit integer, you need to use some tricks.

We saw last time that loading 8-bit constants can be done by using the ADD and SUB

instructions. But there are also instructions that can be repurposed to generate signed 16-bit

constants.

Effective address instructions are basically arithmetic operations disguised as memory

operations. (Yes, I know we haven’t learned about memory operations yet.)

 LDA Ra, disp16(Rb) ; Ra = Rb + (int16_t)disp16

 LDAH Ra, disp16(Rb) ; Ra = Rb + (int16_t)disp16 * 65536

The first instruction applies a signed 16-bit displacement to a value in a register and puts the

result in the Ra register.

The second one is a little trickier. It takes the signed 16-bit displacement and shifts it left 16

positions before adding it to the Rb register.

Both of these operations operate on the full 64-bit register, so they can produce non-

canonical results.

The basic idea behind loading a 32-bit constant (in canonical form) is as follows:

1. Use the LDAH relative to the zero register to load the high-order 48 bits of the 32-bit

constant.

2. Use the LDA instruction relative to the destination register of the previous instruction

to load the low-order 16 bits.

However, the fact that the 16-bit values are sign-extended makes things a bit more

complicated.

Let’s say that the 32-bit constant we want to load into the t0 register is 0xXXXXYYYY .

https://devblogs.microsoft.com/oldnewthing/20170809-00/?p=96785
https://blogs.msdn.microsoft.com/oldnewthing/20170808-00/?p=96775

2/2

Let xxxx be the result you get when you treat XXXX as a signed 16-bit value. Similarly,

yyyy and YYYY .

Let S be the sign bit of XXXX . The canonical form of the constant we want to load is

0xSSSSSSSS`XXXXYYYY .

If yyyy is nonnegative, then we can just load up the two halves of our constant and they

won’t interact with each other.

 LDAH t0, XXXX(zero) ; t0 = 0xSSSSSSSS`XXXX0000

 LDA t0, YYYY(t0) ; t0 = 0xSSSSSSSS`XXXXYYYY

(Throughout, I will leave out the obvious simplifications if XXXX or YYYY is zero.)

If yyyy is negative, then the LDA is going to undershoot by 0x10000 , so we compensate

by adding one more to xxxx .

 LDAH t0, xxxx+1(zero) ; t0 = 0xSSSSSSSS`XXXX0000 + 0x10000

 LDA t0, yyyy(t0) ; t0 = 0xSSSSSSSS`XXXXYYYY

Aha, but this trick doesn’t work if xxxx is exactly 0x7FFF , because 0x7FFF + 1 =

0x8000 , which has the wrong sign bit. In that case, we need a final adjustment step to put

the result into canonical form.

 LDAH t0, -32768(zero) ; t0 = 0xFFFFFFFF`80000000

 LDA t0, yyyy(t0) ; t0 = 0xFFFFFFFF`7FFFYYYY

 ADDL zero, t0, t0 ; t0 = 0x00000000`7FFFYYYY

Constants that are in the range 0x7FFF8000 to 0x7FFFFFFF suffer from this problem.¹

All of this hassle about creating 32-bit constants has consequences for the Windows NT

memory manager, as I discussed a few years ago.

Okay, so that’s it for loading constants. Next time, we’ll start looking at memory access.

¹ There is a special shortcut for the value 0x7FFFFFFF :

 LDA t0, -1(zero) ; t0 = 0xFFFFFFFF`FFFFFFFF

 SRL t0, #33, t0 ; t0 = 0x00000000`7FFFFFFF

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20031008-00/?p=42223
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

