
1/3

August 8, 2017

The Alpha AXP, part 2: Integer calculations
devblogs.microsoft.com/oldnewthing/20170808-00

Raymond Chen

Here are some of the integer computational operations available on the Alpha AXP. I’m going

to cover only the instructions used in general-purpose programming, since that’s the sort of

thing you’re most likely to encounter when debugging everyday application code. In

particular, I’m not going to cover the various multimedia instructions.

Integer arithmetic operations come in two flavors, one that operates on the full 64-bit

register, and another that operates on the least significant 32 bits of the value. As I noted

earlier, the general rule in the Alpha AXP is that if the result of an operation is a 32-bit value

and the destination is a register, then the value is sign-extended to a 64-bit value. This means

that if you use the 32-bit versions of these instructions, the results will be sign-extended to

64-bit values.

The general notation for calculations is to provide the source operands first, and the

destination operand last.

 ADDQ Ra, Rb, Rc ; Rc = Ra + Rb

 ADDQ Ra, #b, Rc ; Rc = Ra + b

 ADDL Ra, Rb, Rc ; Rc = (int64_t)((int32_t)Ra + (int32_t)Rb)

 ADDL Ra, #b, Rc ; Rc = (int64_t)((int32_t)Ra + b)

The ADD instruction has four variants. The 64-bit versions add the two source values and

puts the result in the destination Rc register. The 32-bit versions add the least significant 32-

bit values in the source registers, calculates a 32-bit result, and then sign extends that result

to a 64-bit value, putting the final result in the Rc register. You can add two registers, or you

can add a register and a small constant in the range 0 to 255.

In the future, I’m going to write x to mean “ L or Q “, and Rb/#b to mean “a register

(Rb) or a small constant in the range 0 to 255.”

 SUBx Ra, Rb/#b, Rc ; Rc = Ra - Rb

 MULx Ra, Rb/#b, Rc ; Rc = Ra * Rb

 UMULH Ra, Rb/#b, Rc ; Rc = (Ra *U Rb) >> 64

https://devblogs.microsoft.com/oldnewthing/20170808-00/?p=96775

2/3

The SUB instructions perform subtraction, and the MUL instructions perform

multiplication. The UMULH instruction performs a 64×64 unsigned multiplication, and

stores the high 64 bits of the 128-bit intermediate result. (If you want the low 64 bits, then

use the regular MULQ instruction.)

Note that there is no integer division operation. There are three common workarounds:

Use a helper function.

If dividing by a constant n, you may be able to use the UMULH instruction to multiply

by (2⁶⁴÷n) and then extract the high 64 bits (which means to divide by 2⁶⁴).

Convert both values to floating point, perform a floating point division, and then

convert the result back to an integer.

So hopefully you don’t do a lot of integer division.

 S4ADDx Ra, Rb/#b, Rc ; Rc = Ra * 4 + Rb/#b

 S8ADDx Ra, Rb/#b, Rc ; Rc = Ra * 8 + Rb/#b

 S4SUBx Ra, Rb/#b, Rc ; Rc = Ra * 4 - Rb/#b

 S8SUBx Ra, Rb/#b, Rc ; Rc = Ra * 8 - Rb/#b

The scaled addition and subtraction instructions multiply Ra by 4 or 8 before adding or

subtracting Rb/#b. These are commonly used to calculate effective addresses as part of an

array indexing operation.

Next come the bit-twiddling instructions. Note that these instructions always operate on full

64-bit registers. (But if both inputs are in canonical form, then so too will the result.)

 AND Ra, Rb/#b, Rc ; Rc = Ra & Rb/#b

 BIS Ra, Rb/#b, Rc ; Rc = Ra | Rb/#b "bit set"

 XOR Ra, Rb/#b, Rc ; Rc = Ra ^ Rb/#b

 BIC Ra, Rb/#b, Rc ; Rc = Ra & ~Rb/#b "bit clear"

 ORNOT Ra, Rb/#b, Rc ; Rc = Ra | ~Rb/#b

 EQV Ra, Rb/#b, Rc ; Rc = Ra ^ ~Rb/#b "bit equivalence"

Officially, the C in BIC stands for “complement”, but I find it easier to remember if I

pretend that it stands for “clear”, because it clears the bits in Ra as selected by Rb/#b . For

example,

 BIC t0, #3, t2 ; clear bottom two bits of t0

This takes the value in t0, clears the bottom two bits (#3), and puts the result into t2.

The EQV and ORNOT instructions are not widely used, but I included them for

completeness.

There are three bit-shifting instructions.

3/3

 SLL Ra, Rb/#b, Rc ; Rc = Ra << (Rb/#b % 64)

 SRL Ra, Rb/#b, Rc ; Rc = (uint64_t)Ra >> (Rb/#b % 64)

 SRA Ra, Rb/#b, Rc ; Rc = (int64_t)Ra >> (Rb/#b % 64)

The right-shift has two variants, depending on whether you want the shifted value to be zero-

filled (unsigned, or logical shift) or sign-filled (signed, or arithmetic shift). Note that there

are no 32-bit versions of the bit shifting instructions. They always operate on the full 64-bit

register.

There are some rarely-used computation instructions that I’m not going to go into, like

“count number of leading zero bits” and all the multimedia instructions. There are also some

other computation instructions that are closely related to other functions of the processor, so

I’ll defer those to the appropriate section. Next time, we’ll look at memory access, including

the computation instructions tailored to support memory operations.

Bonus chatter: There are a number of idioms that let you express other concepts in terms

of the instructions above.

 BIS zero, zero, zero ; NOP (writes to zero are ignored)

 BIS zero, zero, Rc ; Set Rc to zero

 ADDL zero, #b, Rc ; Set Rc to a small constant

 SUBL zero, #b, Rc ; Set Rc to a small negative constant

 BIS Ra, Ra, Rc ; Copy Ra to Rc

 BIS zero, Ra, Rc ; Copy Ra to Rc

 BIS Ra, zero, Rc ; Copy Ra to Rc

 SUBx zero, Ra, Rc ; Rc = -Ra

 ORNOTx zero, Ra, Rc ; Rc = ~Ra

 ADDL zero, Rb, Rc ; Rc = (int64_t)(int32_t)Rb

Note that I gave three ways to copy one register to another. The first is the one recommended

by DEC. The second is the one the Microsoft compiler generates. Windows NT requires that

copying registers in function prologues and epilogues must be performed with one of the

three given formats in order for the instruction to be unwindable.

I showed idioms for loading small positive and negative constants, but we’ll see next time

that there’s something that works for medium-sized constants.

The last idiom is an important one because it forces a 32-bit value into canonical form. This

is useful when there isn’t a 32-bit version of the instruction you want, such as a shift

instruction.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

