
1/6

August 7, 2017

The Alpha AXP, part 1: Initial plunge
devblogs.microsoft.com/oldnewthing/20170807-00

Raymond Chen

Since the Itanium series was such a smash hit (two whole people read it!), here’s another

series for a now-defunct processor architecture which Windows once supported. The next

who-knows-how-many days will be devoted to an introduction to the Alpha AXP processor,

as employed by Win32.

The Alpha AXP follows in the traditional RISC philosophy of having a relatively small and

uniform instruction set. The first Alpha AXP chip was dual-issue, and it eventually reached

quad-issue. (There was an eight-issue processor under development when the Alpha AXP

project was cancelled.) This series will focus on the original Alpha AXP architecture because

that’s what Windows NT for Alpha AXP ran on, and it will largely ignore features added later.

The Alpha AXP is a 64-bit processor. It does not have “32-bit mode”; the processor is always

running in 64-bit mode. If the destination of a 32-bit operation is a register, the answer is

always sign-extended to a 64-bit value. (This is known as the “canonical form” for a 32-bit

value in a 64-bit register.) This one weird trick lets you close one eye and sort of pretend that

it’s a 32-bit processor. An Alpha AXP program running on 32-bit Windows NT still has full

access to the 64-bit registers and can use them to perform 64-bit computations. It could even

use the full 64-bit address space, if you were willing to jump through some hoops.

Each instruction is a 32-bit word, aligned on a 4-byte boundary. Unlike other RISC

processors of its era, the Alpha AXP does not have branch delay slots. If you don’t know what

branch delay slots are, then consider yourself lucky.

Memory size terms in the Alpha AXP instruction set are byte, word (two bytes), longword

(four bytes), and quadword (eight bytes).¹ In casual conversation, longword and quadword

are usually shortened long and quad.

The Alpha AXP defines certain groups of instructions which are optional, such as floating

point. If you perform an instruction which is not implemented by the processor, the

instruction will trap into the kernel, and the kernel is expected to emulate the missing

instruction, and then resume execution.

Registers

https://devblogs.microsoft.com/oldnewthing/20170807-00/?p=96766
https://en.wikipedia.org/wiki/Alpha_21464
https://devblogs.microsoft.com/oldnewthing/

2/6

There are 32 integer registers, all 64 bits wide. Formally, they are known by the names r0

through r31, but Win32 assigns them the following mnemonics which correspond to their use

in the Win32 calling convention.

Register Mnemonic Meaning Preserved? Notes

r0 v0 value No On function exit, contains the
return value.

r1…r8 t0…t7 temporary No

r9…r14 s0…s5 saved Yes

r15 fp frame pointer Yes For functions with variable-sized
stacks.

r16…r21 a0…a5 argument No On function entry, contains
function parameters.

r22…r25 t8…t11 temporary No

r26 ra return address Not
normally

r27 t12 temporary No

r28 at assembler
temporary

Volatile Long jump assist.

r29 gp global pointer Special Not used by 32-bit code.

r30 sp stack pointer Yes

r31 zero reads as zero N/A Writes are ignored.

The zero register reads as zero, and writes to it are ignored. But it goes further than that: If

you specify zero as the destination register for an instruction, the entire instruction may be

optimized out by the processor! This means that any side effects may or may not occur.

There are a few exceptions to this rule:

Branch instructions are never optimized out. If a branch instructions specifies zero as

the register to receive the return address, the branch is still taken, but the return

address is thrown away.

Load instructions are always optimized out. If a load instruction specifies zero as the

destination register, the processor will never raise an exception. Instead, these

“phantom loads” are used as prefetch hints to the processor.

3/6

Whereas the behavior of the zero register is architectural, the behavior of the other registers

are established by convention.

Win32 requires that the gp, sp, and fp registers be used for their stated purpose throughout

the entire function. (If a function does not have a variable-sized stack frame, then it can use

fp for any purpose.) Some registers have stated purposes only at entry to a function or exit

from a function. When not at the function boundary, those registers may be used for any

purpose.

Register marked with “Yes” in the “Preserved” column must be preserved across the call;

those marked “No” do not.

The ra register is marked “Not normally” because you don’t normally need to preserve it.

However, if you are a leaf function that uses no stack space and modifies no preserved

registers, then you can skip the generation of unwind codes for the leaf function, but you

must keep the return address in ra for the duration of your function so that the operating

system can unwind out of the function should an exception occur. (Special rules for

lightweight leaf functions also exist for Itanium and x64.)

What does it mean when I say that the at register is volatile?

Direct branch instructions can reach destinations up to 4MB from the current instruction.

When the compiler generates a bsr instruction (branch to subroutine), it typically doesn’t

know how far away the destination is. The compiler just generates a bsr instruction with a

fixup and hopes for the best. It is the linker who knows how far away the destination actually

is, and if it turns out the destination is too far away, the linker changes

 BSR toofaraway

to

 BSR trampoline

trampoline:

 ... set the "at" register equal to the

 ... address of "toofaraway."

 JMP (at) ; register indirect jump

The linker inserts the generated trampoline code between functions, which also has as a

consequence that a single function cannot be larger than 8MB.

https://devblogs.microsoft.com/oldnewthing/
http://blogs.msdn.com/b/oldnewthing/archive/2009/06/11/9725386.aspx

4/6

Anyway, this secret rewriting means that any branch instruction can potentially modify the at

register. In between branches, you can use at, but you cannot rely on its value remaining the

same once a branch is taken. In practice, the compiler just avoids using the at register

altogether.

The gp register is not used by 32-bit code. I don’t know for sure, but I’m guessing that in 64-

bit code, it serves the same purpose as the Itanium gp register.

Note that some register names, like a0 look like hex digits. The Windows debugger resolves

them in favor of hex values, so if you do ? a0 thinking that you’re getting the value of the

a0 register, you’re going to be disappointed. To force a symbol to be interpreted as a register

name, put an at-sign in front: ? @a0 .

Even more confusing is that the Windows debugger’s disassembler does not put the 0x

prefix in front of numbers, so when you see an a0 , you have to use the context to determine

whether it is a number or a register. For example,

 LDA a0, a0(a0)

 ^^ ^^ ^^

 register | register

 number

The first parameter to LDA and the parameter inside the parentheses must be a register, so

the outer a0 ‘s refer to the register. The thing just outside the parentheses must be a

constant, so the middle a0 is the number 160. Yes, it’s confusing at first, but the uniform

instruction set means that these rules are quickly learned, and you don’t really notice it once

you get used to it.

Another point of confusion is that the conventional placeholder names for registers in

instructions are Ra , Rb and Rc . This should not be confused with the ra register.

There are thirty-two floating point registers. Formally, they are known as f0 through f31, but

Win32 assigns the following mnemonics:

Register Mnemonic Preserved? Meaning

f0 No Return value

f1 No Second return value (for complex numbers)

f2…f9 Yes

f10…f15 No

f16…f21 No First six parameters

http://blogs.msdn.com/b/oldnewthing/archive/2015/07/31/10631975.aspx

5/6

f22…f30 No

f31 fzero N/A Reads as zero. Writes are ignored.

There are four floating point formats supported. Two are the usual IEEE single and double

precision formats. Two are special formats for backward compatibility with the DEC VAX.

That’s about all I’m going to say about floating point.

Finally, there are some special registers.

Register Mnemonic Meaning

pc fir program counter

lock_flag For interlocked memory access

phys_locked For interlocked memory access

fpcr Floating point control register

Why is the program counter called fir? Because that stands for “faulting instruction register”.

Clearly named by somebody wearing kernel-colored glasses.

These special registers are not directly accessible. To retrieve the program counter, you can to

issue a branch instruction and save the “return address” into the desired destination register.

We’ll learn more about the lock_flag and phys_locked when we study interlocked memory

access.

Note that there is no flags register.

I repeat: There is no flags register.

Here’s what a register dump looks like in the Windows debugger:

6/6

 v0=00000000 00000016 t0=00000000 00000000 t1=00000000 00000000

 t2=00000000 00000000 t3=00000000 00000009 t4=00000000 00000001

 t5=00000000 0006f9d0 t6=00000000 00000008 t7=00000000 00000000

 s0=00000000 00000001 s1=00000000 00000000 s2=00000000 00081eb0

 s3=00000000 77fc0000 s4=00000000 00081dec s5=00000000 77fc0000

 fp=00000000 7ffde000 a0=00000000 750900c8 a1=00000000 00000001

 a2=00000000 00000009 a3=00000000 0006f9d0 a4=00000000 00000001

 a5=00000000 00000001 t8=00000000 0000004c t9=00000000 00000001

t10=00000000 0000004c t11=ffffffff c00ea124 ra=00000000 77f4df08

t12=00000000 00000001 at=00000000 77f548f0 gp=00000000 00000000

 sp=00000000 0006f9e0 zero=00000000 00000000 fpcr=08000000 00000000

softfpcr=00000000 00000000 fir=77f63bf4

psr=00000003

mode=1 ie=1 irql=0

I never needed to know what softfpcr is. The psr is the processor status register, the

mode is 1 for user mode and 0 for kernel mode, ie is the interrupt enable flag, and irql

is the interrupt request level.

The calling convention is simple. As noted in the tables above, parameters are passed in

registers, with excess parameters spilled onto the stack. There is no home space. The return

address is passed in the ra register, and the stack must be kept aligned on a 16-byte

boundary. Exception dispatch is done by unwind tables stored in a separate section of the

image.

Okay, that’s the register set and calling convention. Next time, we’ll look at integer

operations.

Exercise: The x64 calling convention reserves home space so that the register-based

parameters can be spilled onto the stack and remain contiguous with the other stack-based

parameters, so that the entire parameter pack can be enumerated with the va_start family

of macros. Why doesn’t this requirement apply to the Alpha AXP?

¹ The term octaword was introduced later, but we are focusing on the Alpha AXP classic

architecture.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

