
1/3

August 4, 2017

Wrapping some other scripting language inside a batch
file

devblogs.microsoft.com/oldnewthing/20170804-00

Raymond Chen

Nobody actually enjoys batch programming, but sometimes you can get away with writing in

a language you like better while retaining the .cmd  extension. Still, that leaves you having

to get the extension for that language registered on your target machines, which can be tricky

for xcopy-style deployment scenarios. The solution then is to use a polyglot header that is

valid both as a batch file and in your target language. The header re-invokes the target

language interpreter with the batch file itself as input.

Note: That this trick isn’t necessary if you can associate the file extension with the scripting

engine. So you don’t need to do this polyglot nonsense with, say, PowerShell scripts, because

the .ps1  extension is already associated with powershell.exe  (where available).

The general shape of a polyglot header is

@rem prefix stuff

@⟨interpreter⟩.exe ⟨interpreter options⟩ "%~f0" %*

@goto :eof

⟨suffix stuff⟩

⟨the script itself⟩

⟨trail stuff⟩


Prefixing each line with an at-sign prevents it from being echoed. The first line is a comment,

which lets you stick arbitrary goop in front, in order to swallow up the @rem  and make the

rest of the header invisible to the interpreter.

The "%~f0" %*  sequence looks like line noise, but it’s actually a batch file idiom for “A

quoted, fully-qualified path to the batch file, followed by the original arguments.” The %~f0

part uses the tilde operator to build up a full path to the %0  (which is the batch file itself).

And %*  is a batch variable that expands to the arguments passed to the batch file.

Anything after the @goto :eof  is ignored by the batch interpreter, so you can add

language-specific suffix stuff to finish up the “start ignoring this” goop you set up on the first

line.

https://devblogs.microsoft.com/oldnewthing/20170804-00/?p=96765
http://en.wikipedia.org/wiki/Polyglot_(computing)
http://images.wikia.com/en.futurama/images/9/98/Love%27sLaboursLostinSpacets.png
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/percent.mspx


2/3

Finally, in rare cases, you might need to add trail stuff at the end of the script to balance out

anything you set up in the header, like closing an open set of braces. This is rare because you

usually close them up in the ⟨suffix stuff⟩ part.

Okay, now that we see the general shape of a polyglot header, let’s look at some examples.

Perl

@rem --*-Perl-*--

@perl.exe -x "%~f0" %*

goto :eof

#!perl

⟨perl script⟩


This isn’t a proper polyglot because we’re running perl in a special mode which is not the

default ( -x ). But hey, we’re trying to get things done, not solve some theoretical puzzle, so

running perl in a special mode is just fine if it gets the job done.

Note that if you want other special command line options to be passed to perl, you can sneak

them in with the -x . For example, you might ask for -Sx  to get poor-man’s command line

switch auto-parsing.

The leading comment --*-Perl-*--  is not used by either perl or the command processor.

It’s there by tradition, so that when emacs users load the script into the editor, it will be

detected as a perl script, and perl-specific editing commands will be enabled.

JavaScript

@if (1 == 0) @end /*

@cscript.exe /E:jscript /nologo "%~f0" %*

goto :eof

*/
⟨JScript script⟩


Instead of using @rem , the JScript polyglot header uses an @if  conditional that is never

true. This was chosen so that the opening syntax of the file matches that of JScript

conditional compilation, and the entire header gets gobbled up as a false conditional followed

by a big comment. Note that JScript conditional compilation is a Microsoft extension, but

since cscript  runs the Microsoft JScript engine when you specify /e:jscript , it’s okay

to use it anyway.

Bonus chatter: Sometimes I miss the EXTPROC directive from OS/2’s command interpreter,

then I realize that it really only solves half of the problem (getting the command interpreter

to hand control to another scripting engine), and doesn’t solve the other half (getting the

scripting engine to ignore the start of the batch file). The additional restriction that

EXTPROC  appear on the first line of the batch file makes it harder to work the first line into

valid code in your target language.

http://www.gnu.org/software/emacs/manual/html_node/emacs/Choosing-Modes.html#Choosing-Modes
http://msdn.microsoft.com/en-us/library/7kx09ct1(v=VS.80).aspx
http://www.jrttest.com/Help/Os2Bat.Html#EXTPROC


3/3

Bonus chatter 2: JScript is probably the most convenient alternative scripting language

because, while it may be the world’s most misunderstood programming language, it’s

nevertheless immeasurably better than batch. And it has come preinstalled since

Windows 2000, so your script will work on pretty much any Windows computer of modern

interest. The downside is that the version of JScript used by cscript  is ancient.

PowerShell is very nice, but it wasn’t standard-issue until Windows 7. With the retirement of

Windows Vista, we are finally in a situation where all supported versions of Windows come

with PowerShell. It took eight years, but we made it. (Note that you can’t run PowerShell

scripts by default. You have to go in and change an administrative setting first.)

So maybe, if you’re lucky, you may be able to declare the end of the era of suffering with

batch files. I can more confidently say that the suffering of Batch File Week is now over, at

least for now.

Bonus content: Here’a Web page which demonstrates various batch file string

manipulation operations.

Raymond Chen

Follow







http://javascript.crockford.com/javascript.html
https://msdn.microsoft.com/library/2z6exc9e(v=vs.100).aspx
https://support.microsoft.com/en-us/help/22882/windows-vista-end-of-support
http://technet.microsoft.com/en-us/library/ee176949.aspx
http://www.dostips.com/DtTipsStringManipulation.php
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

