Revisions to previous discussion of the implementation
of anonymous methods in C#

=. devblogs.microsoft.com/oldnewthing/20170717-00

July 17, 2017

-
Raymond Chen

Welcome to CLR Week.
Yes, it’s been a long time since the last CLR Week. Some people might consider that a feature.

Anyway, I'm going to start by calling attention to some revisions to previous discussion of the
implementation of anonymous methods in C#.

e Parti
e Part2
e Parts

The first revision is one most people are well aware of, namely that the scope of the control

variable of a foreach statement is now the controlled statement. What this means for you is
that closing over the loop control variable of a foreach statement is not dangerous. Note,

however, that closing over the loop control variable of a for statement is still dangerous.

The second revision is that noncapturing lambdas are no longer wrappers around a static
method. Even if the lambda captures nothing, it is still converted to an instance method (of
an anonymous type).

The reason given by Kevin Pilch-Bisson is that “delegate invokes are optimized for instance

methods and have space on the stack for them. To call a static method they have to shift
parameters around.”

Let’s unpack that explanation.

Recall that instance methods have a hidden this parameter, whereas static methods do
not. Suppose you want to forward a call from one method to another. For concreteness, let’s
say you have

1/4


https://devblogs.microsoft.com/oldnewthing/20170717-00/?p=96625
https://blogs.msdn.microsoft.com/oldnewthing/20060802-00/?p=30263
https://devblogs.microsoft.com/oldnewthing/
https://blogs.msdn.microsoft.com/oldnewthing/20060804-00/?p=30233
https://ericlippert.com/2009/11/16/closing-over-the-loop-variable-considered-harmful-part-two/
http://stackoverflow.com/q/30897647/#comment49837759_30897727

class C1

{public void M1(int x, int y, int z)
{
System.Console.WriteLine("From {0} to {1} via {2}", X, vy, 2);
itatic public void Si(int x, int y, int z)
{
System.Console.WriteLine("From {0} to {1} via {2}", x, vy, z);
}

}

class C2

{

private C1 cl1 = new C1();
static private C1 s1 = new C1();

public void M2(int x, int y, int z)

{
cl.M1(x, vy, z);

}

static public void S2(int x, int y, int z)

{
Ci1.S1(x, y, z);

}
public void M2S(int x, int y, int z)

{
Ci1.S1(x, y, z);

}

static public void S2M(int x, int y, int z)

{
s1.M1(x, vy, z);

}
3

Since the layouts for the parameters to both c1.M1() and c2.M2() method match,
C2.M2() can get away with the following;:

Fetch this.c1.

Validate that the fetched value is not null.
Replace this with the fetched value.
Jumpto C1.M1 .

The assembly for €2.M2 on x86 would go something like this:

2/4



; fastcall convention passes

; the first parameter (this) in ecx

; the second parameter (x) in edx

; remaining parameters (y, z) on the stack

C2.M2:
mov ecx, [ecx].cl ; fetch this.c1l
cmp ecx, [ecx] ; null check
jmp Ci.M1 ; all the other parameters are already set

Similarly, forwarding a call from one static method to another can reuse the stack frame as-
is:

C2.S52:
jmp C1.S1 ; all parameters are already set properly

However, forwarding from an instance method to a static method or vice versa isn’t so easy.

The compiler would either have to generate a traditional non-tail call:

C2.M2S:
mov ecx, edx put x into ecx
mov edx, [esp][4] put y into edx
push edx, [esp][8] push z
call Cc1.s1
ret 8

C2.S2M:
push [esp][4] push z
push edx push y
mov edx, ecx put x into edx
mov ecx, [C2.s1] put C2.s1 into ecx
cmp ecx, [ecx] ; null check
call Cc1.M1 ; call it
ret 8

Or maybe the compiler plays funny stack rewriting games:1

3/4


https://blogs.msdn.microsoft.com/oldnewthing/20040108-00/?p=41163
https://blogs.msdn.microsoft.com/oldnewthing/20070816-00/?p=25553
https://blogs.msdn.microsoft.com/oldnewthing/20070816-00/?p=25553

C2.M2S:
mov ecx, edx

pop eax
pop edx
push eax
jmp C1.S1

C2.S2M:
pop eax
push edx
push eax

mov edx, ecx
mov ecx, [C2.s1]
cmp ecx, [ecx]
jmp C1.M1

Both of these are worse than the case where the call is forwarded to a function of matching

ilk.

Since delegate invoke is done instance-style, the code to dispatch the delegate to the lambda

; put x into ecx

; pop return address

; pop y into edx

; leave z on the stack

restore return address

; pop return address
; push vy

restore return address

; put x into edx
; put C2.s1 into ecx
; null check

is more efficient if the lambda is also instance.

Since the language specification does not specify the nature of the lambda, whether the
delegate represents a static or instance method is an implementation detail that can change

at any time.

And it did.

1 Note that these stack rewriting games are not available to x64 because of alignment
requirements. On x64, we are forced to generate a traditional non-tail call.

Raymond Chen

Follow

4/4


https://blogs.msdn.microsoft.com/oldnewthing/20070816-00/?p=25553
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

