
1/3

June 27, 2017

Extracting pages from a PDF document and saving them
as separate image files, JavaScript edition with Promises

devblogs.microsoft.com/oldnewthing/20170627-00

Raymond Chen

Last time, we converted the C# version of the PDF Document sample program so that it

saved the pages to disk as image files. Today we’ll port those changes to JavaScript with

Promises.

https://devblogs.microsoft.com/oldnewthing/20170627-00/?p=96475
https://github.com/Microsoft/Windows-universal-samples/tree/v1.0.11/Samples/PdfDocument

2/3

function viewPage() {

 WinJS.log && WinJS.log("", "sample", "status");

 var pageNumber = parseInt(pageNumberBox.value, 10);

 if (isNaN(pageNumber) || (pageNumber < 1) ||

 (pageNumber > pdfDocument.pageCount)) {

 WinJS.log && WinJS.log("Invalid page number.", "sample", "error");

 return;

 }

 output.src = "";

 progressControl.style.display = "block";

 // Convert from 1-based page number to 0-based page index.

 var pageIndex = pageNumber - 1;

 var page = pdfDocument.getPage(pageIndex);

 var picker = new Windows.Storage.Pickers.FileSavePicker();

 picker.fileTypeChoices["PNG image"] = [".png"];

 picker.pickSaveFileAsync().then(outfile => {

 if (outfile) {

 outfile.openTransactedWriteAsync().then(transaction => {

 var options = new PdfPageRenderOptions();

 options.destinationHeight = page.size.height * 2;

 options.destinationWidth = page.size.width * 2;

 page.renderToStreamAsync(transaction.stream, options).then(() => {

 transaction.close();

 });

 });

 }

 }).done(() => {

 page.close();

 // Delete the code that sets the blob into the image

 progressControl.style.display = "none";

 });

}

This is an uninspired direct translation of the C# code to JavaScript. We can imbue it with a

little JavaScript inspiration by flattening the promise chain a bit.

3/3

 var transaction;

 var picker = new Windows.Storage.Pickers.FileSavePicker();

 picker.fileTypeChoices["PNG image"] = [".png"];

 picker.pickSaveFileAsync().then(outfile => {

 if (outfile) {

 return outfile.openTransactedWriteAsync();

 }

 }).then(trans => {

 transaction = trans;

 if (transaction) {

 var options = new PdfPageRenderOptions();

 options.destinationHeight = page.size.height * 2;

 options.destinationWidth = page.size.width * 2;

 return page.renderToStreamAsync(transaction.stream, options);

 }

 }).then(() => {

 transaction && transaction.close();

 }).done(() => {

 page.close();

 // Delete the code that sets the blob into the image

 progressControl.style.display = "none";

 });

Instead of nesting the promises, I chained them, and each step of the chain checks whether

the previous step succeeded before proceeding. (If not, then that step does nothing.)

Alternatively, I could’ve thrown the Promise into an error state, but WinRT tries to reserve

exceptions for unrecoverable errors, primarily out-of-memory conditions for a small

allocation, or a programmer error. Errors that a program is expected to recover from are

generally reported by an in-API mechanism. (There are notable exceptions to this principle,

primarily in the I/O area.)

Anyway, you may have noticed that I used arrow functions, which are feature of ES6. Next

time, I’m going to take it even further.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

