
1/3

June 12, 2017

Creating a semaphore from WaitOnAddress
devblogs.microsoft.com/oldnewthing/20170612-00

Raymond Chen

Some time ago, we explored creating various types of well-known synchronization objects

from WaitOnAddress. Today we’ll create a semaphore with no maximum token count.

(Believe it not, I’m building up to something, but it’ll take a while.)

https://devblogs.microsoft.com/oldnewthing/20170612-00/?p=96375
https://blogs.msdn.microsoft.com/oldnewthing/20160825-00/?p=94165

2/3

struct ALT_SEMAPHORE

{

 LONG TokenCount;

};

void InitializeAltSemaphore(ALT_SEMAPHORE* Semaphore,

 LONG InitialCount)

{

 Semaphore->TokenCount = InitialCount;

}

void ReleaseAltSemaphoreOnce(ALT_SEMAPHORE* Semaphore)

{

 InterlockedIncrement(&Sempahore->TokenCount);

 WakeByAddressSingle(&Sempahore->TokenCount);

}

void ReleaseAltSemaphoreMulti(ALT_SEMAPHORE* Semaphore,

 LONG ReleaseCount)

{

 InterlockedAdd(&Sempahore->TokenCount, ReleaseCount);

 if (ReleaseCount == 1) {

 WakeByAddressSingle(&Sempahore->TokenCount);

 } else {

 WakeByAddressAll(&Sempahore->TokenCount);

 }

}

void WaitForAltSempahore(ALT_SEMAPHORE* Semaphore)

{

 while (true) {

 LONG OriginalCount = Semaphore->TokenCount;

 while (OriginalCount == 0) {

 WaitOnAddress(&Semaphore->TokenCount,

 &OriginalCount,

 sizeof(OriginalCount),

 INFINITE);

 OriginalCount = Semaphore->TokenCount;

 }

 if (InterlockedCompareExchange(&Semaphore->TokenCount,

 OriginalCount - 1,

 OriginalCount) == OriginalCount) {

 return;

 }

 }

}

The semaphore consists simply of the current token count. To release one token, we

increment the token count and wake up any single waiting thread. To release multiple

tokens, we increase the token count by the number of tokens being released and the signal all

the waiting threads. There is no WakeByAddressMulti that lets you wake a specific number

3/3

of threads. Your options are to release one or to release all. In the case where we release more

than one token, we just have to release all of the waiting threads and let them fight over the

tokens.

Claiming a token is the tricky part. There are two parts of claiming a token: Waiting for a

token to become available, and claiming it.

To wait for the token to become available, we wait for the token count to be nonzero. If we

see that it is zero, we use WaitOnAddress to wait until it becomes nonzero. (This relies on

ReleaseAltSemaphoreOnce remembering to WakeByAddressSingle when it changes the

token count.) Once the token count changes, we loop back and see if it’s nonzero now. Note

that this code is resilient to spurious wakes because we always recheck the semaphore count.

Actually, the code would have needed to be resilient to spurious wakes anyway, because it’s

possible that a token got released, but another thread snuck in and stole it from us before we

could check it.

Once we confirm that a token is available (or at least was available recently), we try to

decrement the token count by one. If that succeeds, then we are done. Otherwise, it means

another thread came in and claimed a token before we could claim it, so we loop back to the

top and wait for a token to become available.

Note that this synchronization object is not fair. If a token becomes available and a thread is

waiting, it’s possible for an intruder thread to sneak in and steal the token from the waiting

thread. The waiting thread wakes up, sees that there’s no token, and goes back to sleep.

Next time, we’ll reimplement a semaphore with a maximum count.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

