
1/3

June 7, 2017

On enabling NX and ASLR for a module after the fact
devblogs.microsoft.com/oldnewthing/20170607-00

Raymond Chen

A customer wanted to enable NX (also known as Data Execution Prevention, or DEP) and

ASLR for some executables and DLLs. There are two ways of doing this:

Enable the options at link time by passing the linker command line options /NX‐

COMPAT and /DYNAMICBASE , and for good measure /HIGHENTROPYVA .

Build the modules the usual way, and then use the EDITBIN program with those same

command line options to enable the features on the files in question.

For reasons the customer didn’t provide (but which I can guess),¹ there are a handful of files

that they cannot relink, so they are forced to use the EDITBIN approach for those files.

What the customer found was that both the linker and the EDITBIN approaches seemed to

be fine with /NXCOMPAT . But the story was different with the /DYNAMICBASE flag.

Specifically, the linker approach was creating a larger file due to a new .reloc section. The

file produced by the EDITBIN approach didn’t have a .reloc section, and dumping the

header reports Relocations stripped. Furthermore, when running EDITBIN , it generated

the ominous warning message, “Warning LNK4259: ‘/DYNAMICBASE’ is not compatible

with ‘/FIXED’; image may not run.” It appears that linking with the /DYNAMICBASE flag

implicitly sets /FIXED:NO , but the EDITBIN command doesn’t apply the same behavior,

and it doesn’t support the /FIXED:NO command line option.

The customer had the following questions:

Are the linker approach and the the EDITBIN approach for enabling /NXCOMPAT

equivalent?

Yes, enabling NX via the linker /NXCOMPAT flag is equivalent to enabling it with EDITBIN .

In both cases, they set the IMAGE_ DLLCHARACTERISTICS_ NX_ COMPAT bit in the

IMAGE_ OPTIONAL_ HEADER ‘s DllCharacteristics .

Are the linker approach and the the EDITBIN approach for enabling /DYNAMICBASE

equivalent?

https://devblogs.microsoft.com/oldnewthing/20170607-00/?p=96295

2/3

The answer depends on what color glasses you’re wearing. If you’re wearing kernel-colored

glasses, then yes, the two approaches are the same because both set the IMAGE_ DLL‐

CHARACTERISTICS_ DYNAMIC_ BASE bit in the IMAGE_ OPTIONAL_ HEADER ‘s Dll‐

Characteristics . But in reality, they are not the same, because of the behavior noted

above with respect to relocations. If you ask the linker for /DYNAMICBASE , it will default to

/FIXED:NO because /DYNAMICBASE means “My base address can be moved around”,

which is the opposite of /FIXED , which means “My base address cannot change.”

If you say /FIXED , then the linker does not generate “relocations”, which are the bits of

information that describe what adjustments need to be made to your DLL in order to make it

happy at its new location. Trying to turn on /DYNAMICBASE with EDITBIN on a binary that

is /FIXED doesn’t work because EDITBIN doesn’t know how to regenerate the .reloc

section.

If you want to enable /DYNAMICBASE , then you cannot link with /FIXED .

Are there any adverse consequences of mixing ASLR-enabled DLLs and non-ASLR-

enabled DLLs in the same process?

There are no consequences beyond those already stated on the tin. The ASLR-enabled

binaries will be subject to ASLR, and the non-ASLR-enabled binaries will not. You can mix

and match freely within a process. Just be aware that the non-ASLR-enabled binaries will not

be randomly relocated, which means that those binaries will not benefit from the security

protections provided by ASLR.

Are there any adverse consequences of mixing NX-enabled DLLs and non-NX-enabled

DLLs in the same process?

The NX setting is process-wide, and the process takes its NX state from the /NXENABLED

state of the executable, not from any DLLs. It’s yet another one of the module flags that are

meaningless for DLLs. So mix it up in the DLLs all you want. Nobody will care, because the

flag is ignored for DLLs anyway.

Are there any adverse consequences of mixing EXEs and DLLs which use different

approaches for enabling NX and/or ASLR? For example, is there an unexpected

interaction between an EXE which enabled ASLR with EDITBIN and a DLL that

enabled ASLR with a linker switch? How can I tell whether an EXE or DLL has had its

NX or ASLR bit set via the linker as opposed to the EDITBIN program?

There is no way to tell how the NX or ASLR attributes were enabled. Using the linker or

EDITBIN both lead to the same binary. There’s nothing that records who set the bit. As a

result, it doesn’t matter how you enabled NX and ASLR. The system behaves the same

regardless of how you enabled them.

https://blogs.msdn.microsoft.com/oldnewthing/20110512-00/?p=10683
https://blogs.msdn.microsoft.com/oldnewthing/20110824-00/?p=9823
https://blogs.msdn.microsoft.com/oldnewthing/20140502-00/?p=1093

3/3

Bonus chatter: There is some text on MSDN (which got copied into a glossary on TechNet)

which says

For a component to support ASLR, all components that it loads must also support ASLR. For
example, if A.exe consumes B.dll and C.dll, all three must support ASLR.

Nobody is quite sure how that text got into the documentation, since it’s not true. One of the

original authors of that article surmises that perhaps what they were trying to say was “In

order for a process to take full advantage of ASLR, the executable and all DLLs must support

ASLR,” but somehow the message got garbled during editing.

Given what we already know about how the loader shares pages in the face of ASLR, having a

DLL be subject to ASLR in some processes but not others would create extra work for the

loader, because it now has to be able to keep up to two copies of every DLL in memory: A

randomly-located version for ASLR, and a non-relocated version for non-ASLR. It’s extra

work for no real benefit, so I can understand why they don’t do it.

¹ I can think of a few reasons why the customer cannot relink all of the files. One possibility is

that they don’t have the source code any more. Another is that they have the source code, but

they don’t have the build tools any more. (For example, it may be built with a very old

compiler that doesn’t work any more.) Or they have the source code, and they have the tools,

but they simply don’t want to take the risk that relinking the file might result in an

unexpected change to the program. (For example, if it was linked with an older version of the

linker, and they have since upgraded to a newer version.)

Raymond Chen

Follow

https://msdn.microsoft.com/en-us/library/bb430720.aspx
https://technet.microsoft.com/en-us/library/security/dn848375.aspx
https://devblogs.microsoft.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

