
1/2

May 31, 2017

Extending our critical section based on WaitOnAddress
to support timeouts

devblogs.microsoft.com/oldnewthing/20170531-00

Raymond Chen

Let’s take the critical section we constructed in terms of WaitOnAddress and add two new

functions:

TryEnterAltCs tries to enter the critical section if it is either available or is already

owned by the current thread. If the critical section is owned by another thread, then the

call fails.

TryEnterAltCsWithTimeout which tries to enter the critical section but gives up

after waiting for the specified timeout.

The first function is a simplification of the existing EnterAltCs function. It simply gives up

if the critical section is not available.

bool TryEnterAltCs(ALTCS* Cs)

{

 DWORD ThisThread = GetCurrentThreadId();

 DWORD PreviousOwner = InterlockedCompareExchangeAcquire(

 &Cs->OwnerThread, ThisThread, 0);

 if (PreviousOwner == 0) {

 Cs->ClaimCount++;

 return true;

 }

 if (PreviousOwner == ThisThread) {

 Cs->ClaimCount++;

 return true;

 }

 return false;

}

The second function is a modification of the existing EnterAltCs function that gives up

after waiting too long:

https://devblogs.microsoft.com/oldnewthing/20170531-00/?p=96255
https://blogs.msdn.microsoft.com/oldnewthing/20160825-00/?p=94165

2/2

// Timeout is in milliseconds and cannot be INFINITE.

bool TryEnterAltCsWithTimeout(ALTCS* Cs, DWORD Timeout)
{

 ULONGLONG Deadline = GetTickCount64() + Timeout;

 DWORD ThisThread = GetCurrentThreadId();

 DWORD TimeRemaining;

 do {

 DWORD PreviousOwner = InterlockedCompareExchangeAcquire(

 &Cs->OwnerThread, ThisThread, 0);

 if (PreviousOwner == 0) {

 Cs->ClaimCount++;

 return true;

 }

 if (PreviousOwner == ThisThread) {

 Cs->ClaimCount++;

 return true;

 }

 ULONGLONG Now = GetTickCount64();

 if (Now >= Deadline) {

 return false;

 }

 TimeRemaining = static_cast<DWORD>(Deadline - Now);

 } while (WaitOnAddress(&Cs->OwnerThread,

 &PreviousOwner, sizeof(PreviousOwner), TimeRemaining));

 return false;

}

The changes we made were to keep track of how much time remains before the deadline. If

the deadline passes, then we return false . Otherwise, we ask WaitOnAddress to wait for

the owner to change, or for the timeout to elapse. The function returns FALSE if it returned

due to a timeout, in which case we break out of the loop and return false . Otherwise, we

were signaled (possibly spuriously), so we go back and try to claim the critical section again.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

