
1/2

May 25, 2017

Diagnosing why you cannot create a stable subkey under
a volatile parent key

devblogs.microsoft.com/oldnewthing/20170525-00

Raymond Chen

A customer encountered crashes in their program’s initialization code. They weren’t able to

reproduce the problem in-house, but their failure logs suggested it was coming from here:

var settingsKey =

 Registry.CurrentUser.CreateSubKey(

 "Software\\Contoso\\Common Settings\\Drawing Preferences");

The call was failing with System.IO.IOException: Cannot create a stable subkey

under a volatile parent key . The corresponding Win32 error code is

ERROR_CHILD_MUST_BE_VOLATILE .

First of all, what does this error mean?

This error means exactly what is says: You cannot create a stable (non-volatile) subkey under

a volatile parent key. All children of a volatile key must themselves be volatile.

Okay, but why is the parent key volatile?

We don’t know for sure which key is the volatile parent, but it’s one of Software ,

Software\\Contoso , or Software\\Contoso\\Common Settings . We can probably rule

out Software since that key is pre-created by the system. That leaves the other two Contoso

keys. But they are intended to hold persistent settings. Why would anybody create those keys

as volatile? That would defeat the purpose of the keys.

Ah, but perhaps the parent keys were created volatile by mistake. An often-overlooked detail

of the RegCreateKeyEx function (which is therefore also a detail of the CreateSubKey

CLR method) is that if you ask for the key to be created as volatile, then the volatility applies

to all keys created by the call. This means two things:

If the key already exists, then its stability is unchanged. If it was volatile before, then it

remains volatile. If it was stable before, then it remains stable.

If the key doesn’t already exist, then not only is the new key volatile, but the volatility

also applies to any parent keys that didn’t already exist.

https://devblogs.microsoft.com/oldnewthing/20170525-00/?p=96225

2/2

By searching the code for any attempts to create volatile keys, we found this one that seemed

suspicious:

var sessionSettings =

 Registry.CurrentUser.CreateSubKey(

 "Software\\Contoso\\Common Settings\\Current Session",

 RegistryOptions.Volatile);

The intent of this code was to create a volatile Current Session key to hold the user’s

temporary settings that should be discarded when the user logs off. However, if the

Contoso\\Common Settings key doesn’t yet exist, this will create not only a volatile

Current Session , but also a volatile Common Settings key, and possibly even a volatile

Contoso key!

My theory as to what is going on is that the failures are occurring on machines where the call

to create the Current Session key (1) occurs when the Common Settings key does not

already exist, (2) comes before the call to create the Drawing Preferences key, and

(3) ends up being the call that creates the Common Settings key as a volatile key. One

possibility is that this is the first time any program developed by Contoso has been run by

this user, which means that none of the Contoso keys exist at the point the program starts.

Another possibility is that the user, in a perhaps misguided attempt to fix a problem with a

Contoso-developed program, deleted the entire Common Settings key, or possibly even the

entire Contoso key.

The code to create the Current Session key should do so in two steps. First, create the

stable parent key. Second, create the volatile subkey.

var commonSettings =

 Registry.CurrentUser.CreateSubKey(

 "Software\\Contoso\\Common Settings");

var sessionSettings = commonSettings.CreateSubKey(

 "Current Session",

 RegistryOptions.Volatile);

(Translating this to raw Win32 is left as an exercise for the reader.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

