
1/2

April 20, 2017

On generating sentinel pointer values in Windows
devblogs.microsoft.com/oldnewthing/20170420-00

Raymond Chen

Suppose you have a need for sentinel pointer values. Let’s say that your function operates on

pointers to Widget objects, but you need a few special values that convey special meaning,

like “There is no widget” or “Please use a default widget” or “Inherit the widget from the

parent object” or “All the widgets.”

Well, many languages give you a sentinel pointer value up front, typically called null or

Nothing or nullptr or something emptyish like that. If you need only one sentinel value,

then that’s a pretty simple choice.

On the other hand, this emptyish sentinel value is a common thing that could be generat3ed

by mistake. Some languages use it as the default value for pointers. And the emptyish value

might come out of an earlier failed operation, like an allocation. So you might want to avoid

using the emptyish value as a sentinel because it is too easy to pass by mistake.

If you need a small number of sentinel values, you could just allocate a few objects for the

sole purpose of providing an address. Some classes in the C++ standard library do this. For

example, std::map might allocate a sentinel value to represent end() . (That sentinel

value serves other purposes, too.)

Another idea is to create a bunch of addresses for your own use and carve your sentinel

values out of them. You can VirtualAlloc(MEM_RESERVE) some address space, and

nothing will go into that address space unless you put it there. If you reserve the address

space and intentionally put nothing in it, then all the addresses in that reserved region are

potentially usable as sentinels.

Windows itself does this for you: As part of setting up the process address space, the kernel

reserves the bottom 64KB of address space, so no valid objects will be allocated there. That

gives you 65536 sentinel values, although one of them matches nullptr , so it’s 65535 new

sentinel values. This is the technique used by the MAKEINTRESOURCE and MAKEINTATOM

macros to allow an integer to be smuggled inside a string pointer.

https://devblogs.microsoft.com/oldnewthing/20170420-00/?p=96005
https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933

2/2

Prior to Windows 8, applications could unreserve the bottom 64KB of address space and

allocate actual memory there, which created the opportunity for mass confusion. Windows 8

put a stop to that.

If your widget object has alignment requirements (and if it consists of anything other than

raw bytes, it probably does), you can use any pointer value that does not conform to those

requirements. For example, if widgets must be 4-byte aligned, then any pointer value which

is not divisible by four can be used as a sentinel, since it will never match the address of a

valid widget.

If your widget object has no alignment requirements, you could always invent one by using a

declaration appropriate to your toolset, such as __declspec(align(2)) or

__attribute__(aligned(2)) or whatever.

Even if your alignment requirements are only word-alignment, that gives you two billion

possible 32-bit sentinel values, which is quite a lot. You can use the encoding f(n) = n × 2 + 1

to create a sentinel and its inverse g(n) = (n − 1) / 2 to convert a sentinel back to its magic

number.

(And if you’re using 64-bit pointers, then the number of possible sentinel values is

staggering.)

Exercise: Critique the following suggestion: “You can pick any value greater than

0x80000000 to use as a sentinel value.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

