
1/2

April 10, 2017

When I enable page heap, why is my one-byte buffer
overrun not detected immediately?

devblogs.microsoft.com/oldnewthing/20170410-00

Raymond Chen

Page Heap is a mode of the heap manager¹ that can be enabled by the Debugging Tools for

Windows. When enabled, each memory allocation is placed at the end of a dedicated page,

and the page that follows is left invalid. That way, if you overrun the allocation, you will crash

with an access violation because you are reaching into the next (invalid) page.² When the

memory is freed, the entire page is decommitted, so that any use-after-free bugs will result in

an access violation. (Eventually, the heap manager will reuse the address space.)

A customer noted that when they enabled page heap, the crash did not occur on their one-

byte buffer overrun. They were able to overrun the buffer by 13 bytes before the crash

occurred. “We thought full page heap was supposed to catch buffer overruns immediately.”

Page heap places the allocation as close to the end of the page as it can, but it may not able to

push it right up to the edge because the heap is contractually obligated to respect the

MEMORY_ALLOCATION_ALIGNMENT. Without these alignment guarantees, the heap would be

much harder to use because every allocation would have to be manually aligned to the

desired boundary. (In practice, nearly all data structures have nontrivial alignment

requirements, because they will almost always contain at least one member that is larger

than a byte.)

On 64-bit systems, the allocation alignment is 16, which means that HeapAlloc promises to

return a value that is evenly divisibly by 16. This contractual obligation means that if you

make an allocation request for 3 bytes on a 64-bit system, then the allocation will be placed at

an address of the form xxxxxxxx`xxxxFFF0 , with three bytes of actual data and 13 padding

bytes.

That’s where the 13 bytes of slop are coming from. The heap manager cannot give you a

pointer of the form xxxxxxxx`xxxxFFFD , because that would violate the alignment

contract. However, the heap manager does put canary bytes in those extra 13 bytes, and when

you free or reallocate the memory block, the heap manager verifies that the canary bytes have

not been tampered with. So the write overrun is detected eventually.

https://devblogs.microsoft.com/oldnewthing/20170410-00/?p=95935
https://blogs.msdn.microsoft.com/oldnewthing/20121115-00/?p=6083

2/2

If you want to break the alignment contract and make the memory go right up to the edge,

you can ask for /unaligned /full . Note, however, that handing back unaligned memory

is likely to result in other problems, because one of the ground rules of programming is that

in the absence of explicit permission to the contrary, pointers must be properly aligned. The

consequences of breaking this rule vary depending on how strictly your platform enforces

alignment. The code might take alignment faults. Or the code might simply operate on the

wrong memory. The x86 architecture is mostly alignment-forgiving, but there are still places

(such as interlocked operations and SIMD instructions) where alignment is still important.

¹ I’m using the definite article on “the heap manager” because I’m referring to the system-

provided heap manager. The one that you are using when you call functions like Heap‐

Alloc . If your program uses a custom heap library, then the page heap settings have no

effect on that custom heap library. (This sounds obvious, but sometimes customers expect

the page heap settings to somehow be able to alter the behavior of code it didn’t write.)

² Formally, this model is known as “full page heap”. There’s also a “standard page heap”

which places canary bytes after the end of each allocation. When you free or reallocate the

memory, the heap manager checks whether the canary bytes have been tampered with; if so,

then it informs you of a heap buffer overrun. I don’t know why they call this “standard page

heap” because there are no pages involved.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20060320-13/?p=31853
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

