
1/2

April 7, 2017

If I have a thread waiting on an event, and I call SetEvent
immediately followed by ResetEvent, is the waiting
thread guaranteed to be released?

devblogs.microsoft.com/oldnewthing/20170407-00

Raymond Chen

A customer had developed a producer-consumer scenario and used a manual-reset event to

coordinate the threads. “If there are n threads waiting on an event, is it guaranteed that all n

threads will be unblocked if the event is signaled? Specifically, is this guaranteed if the event

is reset very shortly after it is set? Hypothetically, all the waiting threads may not get

scheduled before the signalling thread resets the event, but is it the case that once the event is

signaled, all the waiting threads will be unblocked and will eventually start receiving CPU

cycles?”

Actually, you have a problem even before you asked the question. How do you know that your

waiting threads really are waiting on the event? After all, the fact that your program called

WaitForSingleObject doesn’t guarantee that the thread is actually waiting. The thread

might get pre-empted immediately after the call instruction and before the first line of

code in WaitForSingleObject executes. As far as your program is concerned, it called

WaitForSingleObject , but in reality, nothing meaningful has happened yet because

WaitForSingleObject hasn’t gotten a chance to do anything. In this scenario, the

signaling thread can call SetEvent and ResetEvent even before the waiting thread gets a

chance to wait. And in that case, obviously, the thread won’t wake up because it never

observed a set event.

Even if you somehow manage to guarantee that the threads are definitely waiting, you’re still

out of luck. Setting the event and resetting it shortly afterward is basically reinventing

PulseEvent , and we already saw that PulseEvent is fundamentally flawed. All the

arguments for why PulseEvent is broken also apply to your homemade PulseEvent

emulator: One of the waiting threads might be temporarily taken out of the wait state to

process a kernel APC, and if your SetEvent and ResetEvent occur before the thread

returns to the wait state, then the thread will have missed your simulated pulse.

https://devblogs.microsoft.com/oldnewthing/20170407-00/?p=95925
https://blogs.msdn.microsoft.com/oldnewthing/20050105-00/?p=36803

2/2

If you have only one waiting thread, you can use an auto-reset event rather than a manual-

reset event. That way, the event resets only when the waiting thread definitely observes the

wait. But this won’t work if you have multiple waiting threads.

You might consider using a semaphore and releasing n tokens to the semaphore when you

want to wake up n threads. There’s still a race condition, though: While preparing to wait, the

thread increments n and then waits on the event handle. Suppose that the thread gets pre-

empted after the increment and before the wait. The signaling thread releases n tokens. All

but one of the tokens are consumed by the other waiting threads, leaving one token for the

thread that is about to wait. But wait, what’s that over there? Another thread swooped in,

incremented n (from 0 to 1, presumably), and waited on the semaphore. That interloper

thread stole your token!

Rather than trying to reimplement PulseEvent poorly, you probably would be better off

using a condition variable. Condition variables are well-suited to these sorts of custom

synchronization conditions.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

