
1/3

March 24, 2017

When you submit a security vulnerability report, we go
the extra mile and try to fix your typos

devblogs.microsoft.com/oldnewthing/20170324-00

Raymond Chen

A security vulnerability report arrived that went like this:

1. Create the folder C:\Folder  and grant full control to authenticated users.
2. Create the subfolder C:\Folder\bar .
3. Create the files C:\Folder\bar\foo  and C:\Folder\foo .
4. Deny all permissions to everyone for those two files.
5. Set the owner of the two files to a domain administrator or some other user.

Even though all access has been revoked to the two files, the following program deletes
C:\Folder\foo :

#include <windows.h>


int main(int, char**)

{

DeleteFileW(L"C:\\Folder\\Bar\foo");

DeleteFileW(L"C:\\Folder\\foo");

return 0;

}


From reading this page, it seems that file deletion is related to the control on the file itself and
not on the parent folder. And anyway, both have the same rights.

There’s nothing wrong here. Even though all access to the file has been revoked, all

authenticated users still have DELETE_CHILD  permission on the parent, and as we noted

some time ago, that is sufficient access to delete any file in the directory. This is also noted in

the documentation for DeleteFile:

To delete or rename a file, you must have either delete permission on the file, or delete
child permission in the parent directory.

The page cited by the finder lists the various permissions available to files and folders. It even

says

https://devblogs.microsoft.com/oldnewthing/20170324-00/?p=95815
http://stackoverflow.com/q/40524436/
https://msdn.microsoft.com/library/bb727008.aspx
https://blogs.msdn.microsoft.com/oldnewthing/20070726-00/?p=25833
https://msdn.microsoft.com/library/windows/desktop/aa363915(v=vs.85).aspx


2/3

If a user has full control over a folder, the user can delete files in the folder regardless of the
permission on the files.

That statement covers the exact scenario described here: The permissions on the parent

folder grant full control, which includes DELETE_CHILD . Mind you, that statement could be

strengthened by weakening the hypothesis and strengthening the conclusion:

If a user has permission to delete children of a folder, the user can delete files and subfolders in
the folder regardless of the permission on the files or subfolders.

Table 13-3 reiterates that Full Control on a folder grants permission to delete files and

subfolders.

So everything is behaving as normal, and the security team replied, “Upon investigation we

have determined that this is not a valid vulnerability as you are an authenticated user, or

providing authenticated access to a potential attackers to reproduce this report.” In other

words, “You gave authenticated users full control, so it’s not a vulnerability that any

authenticated user has full control.”

What made this interesting to me is that the finder posted to Stack Overflow wondering why

this wasn’t a bug. And then the finder eventually discovered a typographical error in their

sample program: The first DeleteFile  call passes the string L"C:\\Folder\\Bar\foo"

instead of L"C:\\Folder\\Bar\\foo" . “I’m not sure why that was not Microsoft’s answer.”

Okay, let’s look back at the situation. The finder appeared to be concerned about two things

but articulated only one of them in the report.

1. The user is able to delete the file C:\Folder\foo .

2. The user is not able to delete the file C:\Folder\bar\foo  even though its

permissions are identical to C:\Folder\foo .

The finder raised only the first question, and that’s the question the security team answered.

That said, the security team tries to be thorough and in this case assumed that the finder

created the C:\Folder\bar\foo  file for a reason, namely in order to delete it. And if they

fix the obvious typo in the program, the file does get deleted. So it seems that the deletion is

following the security model in all cases. The finder never said, “But the

C:\Folder\bar\foo  file is not deleted,” so the security team assumed that the finder was

expecting the file to be deleted, and it was.

The security team didn’t mention the typo because they assumed that it was just a

transcription error. In general, the security team gives the finder all benefit of the doubt and

assume that they are dealing with an experienced programmer who understands the security

model. Any misunderstandings are assumed to be due to communication problems or poor

explanations. These sorts of things happen a lot with legitimate security issues because it is

https://blogs.msdn.microsoft.com/oldnewthing/20111215-00/?p=8883


3/3

common to receive vulnerability reports from people for whom English is not their native

language. You don’t want to reject an issue just because you can’t understand it. And you

definitely don’t want to reject an issue just because there was a typo in the report.

In a sense, the security team failed this particular finder because they assumed too much

from the finder.¹

Sorry.

But you don’t want to take the default position that the finder simply doesn’t understand how

the system works, because that biases you toward rejecting issues just because you can’t

understand them when they are initially presented to you.

¹ It’s like asking a question at a physics symposium: The speaker is going to assume that

you’re a physicist (or at least well-versed enough in physics to understand the proceedings at

a physics symposium), and they will fix the obvious errors in your question, assuming that

you misspoke or were nervous. But if you’re not a physicist, then those automatic corrections

might end up confusing you even more, because they are now answering a question different

from the one you asked.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

