
1/3

March 15, 2017

How do I show the sharing pane from a Win32 desktop
application?

devblogs.microsoft.com/oldnewthing/20170315-00

Raymond Chen

A customer wanted to show the sharing pane from their Win32 desktop application. In a

UWP application, this would be done by calling Windows.ApplicationModel.Data‐

Transfer.DataTransferManager.ShowSharingUI() . Let’s do it in a Win32 desktop app by

following the basic rules for projection: Static methods are represented as methods on a

“Statics” interface on the activation factory.

Start with the scratch program and make these changes. (Remember, Little Programs do

little to no error checking.)

#include <wrl/client.h>

#include <wrl/wrappers/corewrappers.h>

#include <windows.applicationmodel.datatransfer.h>

#include <tchar.h> // Huh? Why are you still using ANSI?

#include <roapi.h>

namespace WRL = Microsoft::WRL;

namespace dt = ABI::Windows::ApplicationModel::DataTransfer;

using Microsoft::WRL::Wrappers::HStringReference;

void OnChar(HWND hwnd, TCHAR ch, int cRepeat)

{

 switch (ch) {

 case TEXT(' '):

 {

 WRL::ComPtr<dt::IDataTransferManagerStatics> dtmStatics;

 RoGetActivationFactory(HStringReference(

 RuntimeClass_Windows_ApplicationModel_DataTransfer_DataTransferManager)

 .Get(), IID_PPV_ARGS(&dtmStatics));

 dtmStatics->ShowShareUI();

 }

 break;

 }

}

HANDLE_MSG(hwnd, WM_CHAR, OnChar);

https://devblogs.microsoft.com/oldnewthing/20170315-00/?p=95735
https://blogs.msdn.microsoft.com/oldnewthing/20160629-00/?p=93775
https://blogs.msdn.microsoft.com/oldnewthing/20030723-00/?p=43073

2/3

Fire up this program, hit the space bar,
and… nothing happens.

Okay, so maybe we need to do a tiny bit of error checking
after all.
The call to
 ShowShareUI

fails with
 E_NOT_SET .
The reason is that the
 ShowShareUI method
has an implicit

dependency on the current thread’s
 CoreWindow ,
because it needs to know
which window is

being shared.
But since we are a Win32 desktop program,
we don’t have a
 CoreWindow .

Oh no, what do we do?

Enter the interop pattern.

To accommodate Win32 desktop programs,
there is a parallel universe of HWND -based

methods.
In places where WinRT depends on the current thread’s
 CoreWindow ,
this

alternative universe offers a similarly-named method,
but with the ForWindow suffix,

indicating that it operates on classic Win32 HWND s
rather than fancy-pants
 CoreWindow s.

One component of
this parallel universe of
 -ForWindow methods
consists of interfaces that

end in the name Interop .
In our case, it’s
 IDataTransferManagerInterop .
This

interface is available on the activation factory,
the same as the
 IDataTransferManager‐

Statics interface.
The general pattern is as follows:

XxxStatics XxxInterop

GetForCurrentView GetForWindow

DoSomething (implied “for current view”) DoSomethingForWindow

In our case, we have a
 ShowSharingUI() method
on the Statics
interface,
so the

corresponding interop method is called
 ShowSharingForWIndow() .

#include <shlobj.h> // IDataTransferManagerInterop

void OnChar(HWND hwnd, TCHAR ch, int cRepeat)

{

 switch (ch) {

 case TEXT(' '):

 {

 WRL::ComPtr<dt::IDataTransferManagerInterop> dtmInterop;

 RoGetActivationFactory(HStringReference(

 RuntimeClass_Windows_ApplicationModel_DataTransfer_DataTransferManager)

 .Get(), IID_PPV_ARGS(&dtmInterop));

 dtmInterop->ShowShareUIForWindow(hwnd);

 }

 break;

 }

}

3/3

Okay, so now we show the share pane, but the pane just offers to share a screen shot. How

can we get the pane to offer custom data provided by the program? We’ll look at that next

time.

Bonus chatter: One of my colleagues noted that “data transfer manager” is a poor name for

the class, seeing as transferring data is what computers do most of the time anyway.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

