
1/1

March 9, 2017

How do I keep thread pool threads, or other threads in
general, from competing with my render thread for CPU?

devblogs.microsoft.com/oldnewthing/20170309-00

Raymond Chen

Processor affinity lets you specify which processor or processors a thread can run on. This

works for threads you control, but what about threads you don’t control?

Consider a game. You want your render thread to run with as little interference as possible

because it is time-critical. You can set the processor affinity for the render thread to one of

the processors, and set the processor affinity for all the other threads you create to other

processors. That way, none of your other threads will compete for CPU resources with the

render thread.

But what about threads that aren’t yours? Suppose the thread pool creates a thread. Well, you

don’t get a chance to set that thread’s affinity. It defaults to the process affinity, which means

that depending on how lucky or unlucky you are, those threads might end up running on the

same CPU as your precious render thread.

Enter CPU sets.

What you can do is call GetSystemCpuSetInformation to identify the available CPU sets.

Assign your render thread to one of the CPU sets, and set the process default CPU sets to all

the other CPU sets. The process default CPU sets are used by a thread which has not been

explicitly assigned any CPU sets. The thread pool threads, therefore, will run on the process

default CPU sets, which means that they won’t try to run on the same CPU as your render

thread, because you carefully set things up so that the render thread runs on a dedicated CPU

set.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20170309-00/?p=95695
https://msdn.microsoft.com/library/windows/desktop/mt186420(v=vs.85).aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

