
1/3

February 27, 2017

How do I disable the press-and-hold gesture for my
window?

devblogs.microsoft.com/oldnewthing/20170227-00

Raymond Chen

A customer had a program which responded to left mouse clicks, but they found that when

used with a touch screen, when users touched the screen, the WM_LBUTTONDOWN message

didn’t arrive until the users lifted their fingers from the screen. They wanted to know whether

this was by design, and also whether there was a way to get the WM_LBUTTONDOWN message

as soon as the finger touches the screen.

Yes, this behavior is by design. The system is waiting to see whether the user is making a

press-and-hold gesture. If so, then the touch events are converted to right-mouse-button

messages (WM_RBUTTONDOWN and WM_RBUTTONUP). But if the finger does not remain in

contact for a long time, then the touch events are converted to left-mouse-button messages

(WM_LBUTTONDOWN and WM_LBUTTONUP).

The customer’s program was targeting Windows 7, so they were looking for solutions that

would work on that platform.

Take our scratch program and add the following:

https://devblogs.microsoft.com/oldnewthing/20170227-00/?p=95585
https://blogs.msdn.microsoft.com/oldnewthing/20030723-00/?p=43073

2/3

#include <strsafe.h> // StringCchPrintf

#include <tpcshrd.h> // WM_TABLET_QUERYSYSTEMGESTURESTATUS

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

 g_hwndChild = CreateWindow(TEXT("listbox"), NULL,

 LBS_HASSTRINGS | WS_CHILD | WS_VISIBLE | WS_VSCROLL,

 0, 0, 0, 0, hwnd, NULL, g_hinst, 0);

 return TRUE;

}

void

OnSize(HWND hwnd, UINT state, int cx, int cy)

{

 if (g_hwndChild) {

 MoveWindow(g_hwndChild, 0, 0, cx, cy/2, TRUE);

 }

}

LRESULT CALLBACK

WndProc(HWND hwnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

{

 ...

 case WM_LBUTTONDOWN:

 case WM_LBUTTONUP:

 case WM_RBUTTONDOWN:

 case WM_RBUTTONUP:

 {

 TCHAR buffer[80];

 StringCchPrintf(buffer, 80, TEXT("%04x %d %d"), uiMsg,

 GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam));

 ListBox_AddString(g_hwndChild, buffer);

 }

 break;

 case WM_TABLET_QUERYSYSTEMGESTURESTATUS:

 return TABLET_DISABLE_PRESSANDHOLD;

 ...

}

Most of this code is just creating a logging window so we can see the message traffic. (Note

that we divide cy by 2 in the OnSize function so that there is room at the bottom of the

window for touch activity.)

The interesting part is adding a handler for the WM_TABLET_QUERYSYSTEMGESTURESTATUS

message and responding that we want to disable press-and-hold.

3/3

This successfully disables the press-and-hold gesture on Tablet PC (remember that?),

allowing the left-button messages to be generated immediately upon contact. But it doesn’t

help for Windows 7 and above. For that, we need something else:

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

 g_hwndChild = CreateWindow(TEXT("listbox"), NULL,

 LBS_HASSTRINGS | WS_CHILD | WS_VISIBLE | WS_VSCROLL,

 0, 0, 0, 0, hwnd, NULL, g_hinst, 0);

 GESTURECONFIG config;

 config.dwID = 0;

 config.dwWant = 0;

 config.dwBlock = GC_ALLGESTURES;

 SetGestureConfig(hwnd, 0, 1, &config, sizeof(config));

 return TRUE;

}

This time, we disable all gestures using SetGestureConfig . This takes care of Windows 7

and higher.

So there are your options: There’s a “Windows XP and Windows Vista” solution, and there’s a

“Windows 7 and higher” solution. Or you can just play it safe and use both.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

