
1/3

February 17, 2017

A more efficient solution to the problem of a long-running
task running on the thread pool persistent thread

devblogs.microsoft.com/oldnewthing/20170217-00

Raymond Chen

Last time, we found one solution to the problem of the long-running task on the persistent

thread: Namely, put the long-running task on a regular thread. But that’s not the best

solution, because it still burns a thread.

The better solution is to let the thread pool manage the wait. Instead of dedicating a task pool

thread to waiting around for a specific type of work to do, the thread pool can merge the wait

with all the other thread pool wait operations onto a single thread. This keeps all task pool

threads available for doing actual work.

https://devblogs.microsoft.com/oldnewthing/20170217-00/?p=95465
https://blogs.msdn.microsoft.com/oldnewthing/20170216-00/?p=95455

2/3

// Error checking elided for expository purposes.

void WidgetMonitor::RegisterNotificationWait(

WidgetNotificationContext* context)

{

RegisterWaitForSingleObject(&context->waitHandle,

 context->registryEvent,

 WidgetNotificationWaitCallback,

 context,

 INFINITE,

 WT_EXECUTEONLYONCE | WT_EXECUTEINPERSISTENTTHREAD);

RegNotifyChangeKeyValue(context->hkey, false,

 REG_NOTIFY_CHANGE_LAST_SET,

 context->registryEvent, TRUE);

}

void WidgetMonitor::WidgetNotificationStartCallback(void* parameter)

{

WidgetNotificationContext* context =

 reinterpret_cast<WidgetNotificationContext*>(parameter);

context->hkey = ...;

context->registryEvent = ...;

RegisterNotificationWait(context);

}

void WidgetMonitor::WidgetNotificationWaitCallback(

 void* parameter, BOOLEAN /* TimerOrWaitFired */)

{

WidgetNotificationContext* context =

 reinterpret_cast<WidgetNotificationContext*>(parameter);

... process the change ...

RegisterNotificationWait(context);

}

void WidgetMonitor::StartMonitoring()

{

auto context = new WidgetNotificationContext();

QueueUserWorkItem(WidgetNotificationStartCallback,

 context,

 WT_EXECUTEINPERSISTENTTHREAD);

}

void WidgetMonitor::StopMonitoring(

 WidgetNotificationContext* context)

{

// WARNING! Massive race conditions here need to be addressed.

if (context->waitHandle) {

 UnregisterWait(context->waitHandle);

3/3

 context->waitHandle = nullptr;

}
... clean up other resources ...

delete context;

}

The basic idea is that you start the ball rolling by queueing WidgetNotificationStart‐

Callback onto the persistent thread. This task opens the registry key and registers the

notification. The registration must take place on a persistent thread, and we use the thread

pool persistent thread for this purpose, since we are not going to keep a thread captive for the

duration of the registration.

When the change occurs, we process it (quickly, since we’re on the persistent thread), then

register another wait. We use one-time waits because we don’t want two sets of changes to be

processed simultaneously.

When the client wants to stop receiving notifications, we unregister the wait, which prevents

us from reacting to any future changes. And we clean up any other resources before deleting

the context. (Of course, you probably would put all of this code into the Widget‐

NotificationContext destructor, but I’m putting it here for explicitness.)

Now, this code has race conditions galore. For example, what if a change is being processed

at the moment the client deides to stop notifications? I’ll leave closing all the race windows

(and adding proper error handling) as an exercise. You may find that the error handling is a

lot easier if you switch to functions like CreateThreadPoolWait , which let you preallocate

all the resources that will be used by a future wait operation, thereby removing an error

scenario.

If processing the change notification is slow (for example, because it waits for the client to

respond), then we cannot do that work on the persistent thread. Instead, we should queue

the wait callback to a regular thread pool thread, and then queue another Widget‐

NotificationStartCallback back to the persistent thread to request the next registry

notification. While you’re at it, move all the code that initializes the context into the

StartMonitoring method. This solves two problems: First, it lets you handle errors more

easily, since you can report them to the code that valled StartMonitoring . But more

important, it avoids double-initializing the context .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

