
1/4

February 15, 2017

Why did my thread pool stop processing work once it hit
a long-running work item?

devblogs.microsoft.com/oldnewthing/20170215-00

Raymond Chen

A customer found that occasionally, their program’s thread pool stopped processing work

items queued with the WT_EXECUTEINPERSISTENTHREAD flag. They would queue up the

work items to the thread pool, but the work items would not get dispatched. Naturally, this

caused problems with the program because certain background actions would simply stall.

After some investigation, the problem was traced to this work item that appears to be

preventing the thread pool from processing any work:

ntdll!NtWaitForMultipleObjects+0xc

KERNELBASE!WaitForMultipleObjectsEx+0xcc

kernel32!WaitForMultipleObjects+0x19

contoso!WidgetMonitor::WidgetNotificationCallback+0xfd

contoso!std::tr1::_Callable_fun<void (__stdcall*const)

 (std::tr1::shared_ptr<WidgetService>),0>::_ApplyX+0x1b

contoso!std::tr1::_Impl_no_alloc1<std::tr1::_Callable_fun<

 void (__stdcall*const)(std::tr1::shared_ptr<WidgetService>),0>,

 void,std::tr1::shared_ptr<WidgetService> &>::_Do_call+0x2d

contoso!std::tr1::_Function_impl1<void,std::tr1::shared_ptr<

 WidgetMonitor::WidgetNotificationContext> &>::operator()+0x1e

contoso!Win32Adapters::Threading::Callback<std::tr1::shared_ptr<

 WidgetMonitor::WidgetNotificationContext> >::

 ExecuteCallbackTarget+0x3f

contoso!Win32Adapters::Threading::Callback<std::tr1::shared_ptr<

 WidgetMonitor::WidgetNotificationContext> >::

 DefaultThreadProc+0xd

ntdll!RtlpTpWorkCallback+0xef

ntdll!TppWorkerThread+0x4f3

kernel32!BaseThreadInitThunk+0x24

ntdll!__RtlUserThreadStart+0x2f

ntdll!_RtlUserThreadStart+0x1b

(I inserted line breaks for readability.)

Once they closed the widget monitor, the thread pool woke up and the work items that

targeted the persistent thread started running again.

https://devblogs.microsoft.com/oldnewthing/20170215-00/?p=95435

2/4

Okay, first things first: For expository purposes, let’s remove all of the std::tr1 stuff and

pretend that the stack was this:

ntdll!NtWaitForMultipleObjects+0xc

KERNELBASE!WaitForMultipleObjectsEx+0xcc

kernel32!WaitForMultipleObjects+0x19

contoso!WidgetMonitor::WidgetNotificationCallback+0xfd

ntdll!RtlpTpWorkCallback+0xef

ntdll!TppWorkerThread+0x4f3

kernel32!BaseThreadInitThunk+0x24

ntdll!__RtlUserThreadStart+0x2f

ntdll!_RtlUserThreadStart+0x1b

That gets rid of the project’s internal callback scaffolding and lets us focus on the interaction

with the operating system.

The problem isn’t really visible in the stack trace. We’ll have to go to the code.

void WidgetMonitor::WidgetNotificationCallback(void* parameter)

{

WidgetNotificationContext* context =

 reinterpret_cast<WidgetNotificationContext*>(parameter);

RAII_HKEY hkey = ...;

RAII_HANDLE registryEvent = ...;

bool keepWaiting = true;

while (keepWaiting) {

 if (RegNotifyChangeKeyValue(hkey, false, REG_NOTIFY_CHANGE_LAST_SET,

 registryEvent, TRUE) == ERROR_SUCCESS) {

 HANDLE handles[2] = { registryEvent, context->shutdownEvent };

 DWORD waitResult = WaitForMultipleObjects(2, handles, FALSE, INFINITE);

 switch (waitResult) {

 case WAIT_OBJECT_0: // the registry key changed

 ...

 break;

 case WAIT_OBJECT_0+1: // we are being asked to shut down

 ...

 keepWaiting = false;

 break;

 default: // Something unexpected happened

 ...

 keepWaiting = false;

 break;

 }

 }

}
}

The deal is that the callback function processes the callback, and then goes into a loop

monitoring a registry key. It continues monitoring the key until the shutdown event is

signaled.

3/4

Okay, so this looks a little weird, holding a thread pool thread hostage for an extended period

of time, which is sort of contrary to the intent of a thread pool, which is to reuse a thread for

multiple short work items. But it’s technically legal, and you are encouraged to pass the

WT_EXECUTELONGFUNCTION flag to tell the thread pool, “This function will take a long time, so

you may want to schedule work onto other threads more aggressively instead of sitting

around waiting for this work item to finish.”

But the problem is that the program didn’t pass only the WT_EXECUTELONGFUNCTION flag. It

did this:

BOOL WidgetMonitor::StartMonitoringChangeNotifications()

{

 WidgetNotificationContext context = ...;

 return QueueUserWorkItem(

 WidgetMonitor::WidgetNotificationCallback,

 context, WT_EXECUTELONGFUNCTION | WT_EXECUTEINPERSISTENTTHREAD);

}

Notice that they requested that the callback run in the persistent thread. But the

documentation for that flag says

This flag should be used only for short tasks…

So we have a contradiction. One flag says, “Run this callback in a persistent thread, and I

promise I don’t take a long time.” The other flag says, “I’m going to take a long time.”

The original thread pool was a bit too trusting and assumed that nobody would be so crazy as

to explicitly declare their intent to break the rules.¹ I mean, if you’re going to break the rules,

you are probably going to be sneaky about it, right? It so happened that the way the thread

pool code was written, the WT_EXECUTEINPERSISTENTHREAD flag takes precedence. The

callback runs in the persistent thread, even though it runs long.²

And that’s why the thread pool persistent thread grinds to a halt. The persistent thread is

running the callback function, and the callback function is stuck. As a result, the persistent

thread can’t do anything else, and the thread pool makes no progress. This also explains why

shutting down widget notifications caused everything to wake up: Shutting down widget

notifications causes the WidgetConfig::WidgetNotificationCallback function to break

out of its loop and finally exit. This releases the persistent thread to run more work items.

Okay, so we’ve diagnosed the problem. Next time, we’ll speculate as to why the developers

chose to combine contradictory threads and (perhaps more important) suggest a solution.

¹ Actually, what’s happening is that the two flags are targeting different parts of the thread

pool. The “persistent thread” flag is an instruction to the thread pool work item dispatcher,

telling it to dispatch the work item to a persistent thread. The “long function” flag is an

https://devblogs.microsoft.com/oldnewthing/
https://blogs.msdn.microsoft.com/oldnewthing/20111209-00/?p=8933

4/4

instruction to the thread pool throughput manager to let it know that it should prefer to start

a new thread instead of waiting for the work item to complete. Neither component on its own

noticed anything wrong.

² If we had a time machine, we could go back and make this combination of flags cause

QueueUserWorkItem fail with ERROR_INVALID_PARAMETER , but unfortunately that option

is not available to us. We’re stuck with the existing behavior of allowing the contradictory

flags and ignoring the WT_EXECUTELONGFUNCTION flag.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

