
1/5

February 3, 2017

Why am I getting a crash at shutdown inside the thread
pool?

devblogs.microsoft.com/oldnewthing/20170203-00

Raymond Chen

A customer reported a crash in WinHTTP when their application shuts down a WebSocket.

Specifically, it occurs when one of their DLL’s global objects is being destructed.

The customer sent us a redacted call stack:

https://devblogs.microsoft.com/oldnewthing/20170203-00/?p=95345

2/5

00a5e11c 7753ebbe ntdll!KiFastSystemCallRet

00a5e120 77581174 ntdll!NtAlpcSendWaitReceivePort+0xa

00a5e1d0 7758078a ntdll!SendMessageToWERService+0x14d

00a5ecc0 77580c10 ntdll!ReportExceptionInternal+0xde

00a5f118 7758085b ntdll!RtlReportExceptionEx+0x379

00a5f170 775a74dc ntdll!RtlReportException+0x9b

00a5f180 77541454 ntdll!TppRaiseInvalidParameter+0x51

00a5f194 77540ddd ntdll!_EH4_CallFilterFunc+0x12

00a5f1bc 77544d33 ntdll!_except_handler4_common+0x8d

00a5f1dc 775508d2 ntdll!_except_handler4+0x20

00a5f200 775508a4 ntdll!ExecuteHandler2+0x26

00a5f2c8 7753f477 ntdll!ExecuteHandler+0x24

00a5f2c8 775a74c2 ntdll!KiUserExceptionDispatcher+0xf

00a5f660 7755ddb0 ntdll!TppRaiseInvalidParameter+0x37

00a5f66c 774ecdd2 ntdll!TppTimerpValidateTimer+0x6e1a2

00a5f690 757ddadb ntdll!TpSetTimerEx+0x1b

00a5f6b8 757c646d WINHTTP!HTTP_THREAD_POOL::SetTimer+0x42

00a5f6f0 757c6070 WINHTTP!WEB_SOCKET_HANDLE_OBJECT::Close+0x1bb

00a5f754 69699832 WINHTTP!WinHttpWebSocketClose+0x9c

...

global atexit call being made here

...

00a5f814 696d1f7d XXXXXX!_CRT_INIT+0xaa

00a5f874 7753cd4e XXXXXX!__DllMainCRTStartup+0x1ee

00a5f894 77505525 ntdll!LdrxCallInitRoutine+0x16

00a5f8e4 775057cb ntdll!LdrpCallInitRoutine+0x43

00a5f97c 77518e3f ntdll!LdrShutdownProcess+0x101

00a5f990 77065736 ntdll!RtlExitUserProcess+0x63

00a5f99c 77065471 msvcrt!__crtExitProcess+0x17

00a5f9e0 77065715 msvcrt!doexit+0x10a

00a5f9f4 00be2369 msvcrt!exit+0x11

00a5fa2c 7752b2dd contoso!__wmainCRTStartup+0x114

00a5fa70 7752b2a7 ntdll!__RtlUserThreadStart+0x2f

00a5fa80 00000000 ntdll!_RtlUserThreadStart+0x1b

The customer concluded, “We have some ideas that may work around the issue by using

WINHTTP_OPTION_WEB_SOCKET_CLOSE_TIMEOUT to avoid the close timeout, but we’d like

confirmation as to whether this will actually solve the problem.”

Okay, first let’s understand the problem, then we can look at possible solutions.

The customer has a DLL with a global object, and as we learned some time ago, global objects

in DLLs are destructed as part of DLL_PROCESS_DETACH . The problem is that the thread

pool has already shut down by the time this DLL gets around to destroying global objects. We

know this because one of the first steps in process termination is terminating all but one of

the threads. A thread pool without any threads is not really a thread pool any more.

At process termination, the thread pool is electrified. Any attempt to schedule new work on

the thread pool will result in an immediate crash. In this case, the problem is that the

customer’s DLL is closing a WinHTTP WebSocket, and one of the things that WinHTTP does

https://blogs.msdn.microsoft.com/oldnewthing/20141017-00/?p=43823
https://blogs.msdn.microsoft.com/oldnewthing/20070503-00/?p=27003

3/5

when it closes a WebSocket is to schedule a thread pool timer so it can abort the close

handshake if it takes too long.

Okay, so the chain of events goes like this: Thread pool gets electrified, then the DLL starts

destructing its objects, and one of the objects tries to close a WebSocket, and closing the

WebSocket creates a thread pool timer, but the thread pool is electrified, so the process

crashes.

Okay, now that we understand the problem, let’s look for solutions.

The customer’s proposed workaround is to use

WINHTTP_OPTION_WEB_SOCKET_CLOSE_TIMEOUT to set the timeout to INFINITE . This tells

WinHTTP to let the close operation take as long as it wants, which means that it doesn’t

bother creating a thread pool timer to abort a close operation that is taking too long (because

you said that there’s no such thing as “too long”).

That solves the proximate problem, but really this is just playing whack-a-mole. You may be

able to get rid of this crash caused by closing a WinHTTP WebSocket, but this may merely

expose some other object that is also using the thread pool at destruction, and you’re going to

have to go through all this analysis again and look for a way to get that other object to avoid

the thread pool at process termination.

The best solution is to try to get rid of the global variables in the first place. If you can’t do

that, then you at least want to avoid running the destructors at process termination. There

are a few ways of accomplishing this:

Clean up the global variables explicitly prior to process termination. The destructors

will run at DLL_PROCESS_DETACH , but since you already released the resources, the

destructors won’t do anything.

Neuter the global variables in DLL_PROCESS_DETACH if the reason for the notification

is that the process is terminating. That way, when their destructors run, they won’t do

anything.

A special case of the previous item is to set a flag in DLL_PROCESS_DETACH if the

reason for the notification is that the process is terminating. Have the destructors check

the flag and do nothing if the flag is set.

The point is that you don’t want to do any cleanup at process termination, because the

process has already stopped providing services, and lots of things may be electrified. You just

want to let the process terminate and stay out of its way.

Exercise: By a startling coincidence, the day I wrote this blog entry, this question arrived

from another customer. Use what you know to diagnose the customer’s problem. (In

particular, why is the problem sporadic?)

https://google.github.io/styleguide/cppguide.html#Static_and_Global_Variables

4/5

We are using a C++ wrapper around Win32 timers. During object destruction, we deactivate the
timer by following the recommended pattern: ::SetThreadpoolTimer(this-
>GetHandle(), nullptr, 0, 0); This works fine, but in some rare scenarios, we
encounter this crash.

ntdll!ZwWaitForMultipleObjects+0xa

ntdll!RtlReportExceptionEx+0x452

ntdll!RtlReportException+0xbc

ntdll!TppReportExceptionFilter+0x16

ntdll!TppRaiseInvalidParameter$filt$0+0xe

ntdll!__C_specific_handler+0x96

ntdll!__GSHandlerCheck_SEH+0x76

ntdll!RtlpExecuteHandlerForException+0xd

ntdll!RtlDispatchException+0x197

ntdll!RtlRaiseException+0x18d

ntdll!TppRaiseInvalidParameter+0x48

ntdll!TppTimerpValidateTimer+0x6eb93

ntdll!TpSetTimerEx+0x33

contoso!WinAPI::ThreadPool::Timer<...>::Reset+0x12

contoso!WinAPI::ThreadPool::Timer<...>::{dtor}+0x12

contoso!std::default_delete<WinAPI::ThreadPool::Timer<...>>::operator()+0x12

contoso!std::unique_ptr<WinAPI::ThreadPool::Timer<...>, ...>::reset+0x23

contoso!Contoso::SharedMemoryCache::~SharedMemoryCache+0x57

contoso!Contoso::SharedMemoryCache::`scalar deleting destructor'+0x14

contoso!std::_Ref_count_base::_Decref+0x17

contoso!std::_Ptr_base<...>::_Decref+0x20

contoso!std::shared_ptr<...>::{dtor}+0x20

contoso!std::tuple<...>::~tuple<...>+0x49

contoso!`dynamic atexit destructor for 'Extension::s_extension''+0x23

ucrtbase!<lambda_275893d493268fdec8709772e3fcec0e>::operator()+0xb7

ucrtbase!__crt_seh_guarded_call<int>::operator()<...>+0x3b

ucrtbase!__acrt_lock_and_call+0x1e

ucrtbase!_execute_onexit_table+0x31

contoso!dllmain_crt_process_detach+0x4e

contoso!dllmain_dispatch+0xd3

ntdll!LdrpCallInitRoutine+0x4c

ntdll!LdrShutdownProcess+0x142

ntdll!RtlExitUserProcess+0x98

kernel32!ExitProcessImplementation+0xa

contososerver!ControlSignalHandler::HandleControlSignal+0x68

KERNELBASE!CtrlRoutine+0xb3

kernel32!BaseThreadInitThunk+0x22

ntdll!RtlUserThreadStart+0x34

Any pointers would be appreciated.

Raymond Chen

Follow

https://msdn.microsoft.com/library/windows/desktop/ms686271(v=vs.85).aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

5/5

