
1/2

January 26, 2017

How can I control the directory from which my delay-
loaded DLL is loaded?

devblogs.microsoft.com/oldnewthing/20170126-00

Raymond Chen

A customer had a DLL that is a COM in-process server. This DLL gets loaded by arbitrary

client applications, and it also uses the /DELAYLOAD linker flag to delay-load many of the

DLLs which it depends upon. The customer observed that these delay-loaded DLLs were

being loaded according to the standard DLL-loading search algorithm.¹ The problem is that

the DLL which they are dependent upon is not in the standard search path; it’s in its own

private directory.

The customer explained that they are working around this problem by providing a custom

delay-load helper function which calls SetDllDirectory to add the private directory to the

DLL search path.

The customer wanted to know whether SetDllDirectory affects the DLL search path for

the entire process. The customer doesn’t want to affect the DLL search path for the entire

process because the DLL is a guest in the host process, so it shouldn’t be changing the carpet.

(Hey, at least they’re not calling in a demolition team.) “If it affects only the DLL we need to

load, then it looks like SetDllDirectory is what we need. But if it affects the entire

process, then we would have to switch to AddDllDirectory .”

Yes, the SetDllDirectory function affects the DLL search path for the entire process. It’s

not clear what the customer’s mental model is for “affects only the DLL we need to load”,

seeing as you don’t actually pass SetDllDirectory the name of the DLL you need to load,

so it has no idea which DLL to apply this path to.

The customer’s proposed alternative of using AddDllDirectory doesn’t solve the problem,

because it too affects the DLL search path for the entire process. Maybe they were thinking of

calling AddDllDirectory to add the private directory, then calling RemoveDllDirectory

to remove it at some unspecified point in the future. But that creates a window in which the

process DLL path has the private directory, and if another thread also calls LoadLibrary , it

will see that other private directory, which is presumably unwanted.

https://devblogs.microsoft.com/oldnewthing/20170126-00/?p=95265
https://msdn.microsoft.com/library/09t6x5ds.aspx
https://blogs.msdn.microsoft.com/oldnewthing/20110803-00/?p=9983
https://blogs.msdn.microsoft.com/oldnewthing/20091202-00/?p=15823
https://devblogs.microsoft.com/oldnewthing/

2/2

The customer is making things too hard for themselves by manipulating the DLL search

paths. Since they know what directory the DLL is in, they don’t need to do any searching at

all. When the notification handler is called, it is given a few pieces of information.

The reason why the handler is being called.

Information about the DLL being loaded.

Since the customer already has a custom handler, they can just write their custom handler

like this:

FARPROC WINAPI delayHook(unsigned dliNotify, PDelayLoadInfo pdli)

{

if (dliNotify == dliNotePreLoadLibrary &&

 StrCmpIC(pdli->szDll, "special.dll") == 0)

{
 return LoadTheSpecialDll();

}
...

}

HMODULE LoadTheSpecialDll()

{

.. calculate the full path to the special DLL in its

.. private directory

return LoadLibrary(fullPathToSpecialDll);

}

If the notification handler is being told that we are about to load special.dll , then load

the special DLL using whatever custom algorithm you need, and return that handle. The

delay-load library will use that module instead of trying to load via the standard DLL search

directory. There’s no need to mess around with Get / SetDllDirectory , which is a good

thing, since that avoids applying a global solution to a local problem.

¹ This is explained in the documentation, because it says that the default delay-load helper

function calls the LoadLibrary function, which is subject to the standard DLL search path.

Though technically, it calls LoadLibraryEx and passes a flags value of 0, which is

functionally equivalent. You can see this and more in the file delayhlp.cpp in the

VC\Include directory.

Raymond Chen

Follow

https://msdn.microsoft.com/library/f0fkfy9y.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

