
1/4

January 13, 2017

A survey of the various ways of declaring pages of
memory to be uninteresting

devblogs.microsoft.com/oldnewthing/20170113-00

Raymond Chen

The list of ways a program can declare pages of memory to be uninteresting seems to be

growing steadily. Let’s look at what we have so far today.

The most old-fashioned way of declaring a page to be uninteresting is to free it. The catch

with that is that freeing the memory with the VirtualFree function and the

MEM_RELEASE flag frees the entire allocation, not individual pages. If you allocated a 64KB

chunk of memory, then you have to release the whole thing. You can’t release half of it.

But all is not lost. Because while you cannot free a single page from a larger allocation, you

can decommit it, which is almost as good. Decommitting page is like freeing it, except that

the address space is still reserved. To decommit a page, call VirtualFree with the

MEM_DECOMMIT flag.

For quite some time, those were the only tools you had available. Around the Windows NT 4

era, a new trick arrived on the scene: You could VirtualUnlock memory that was already

unlocked in order to remove it from your working set. This was a trick, because it took what

used to be a programming error and gave it additional meaning, but in a way that didn’t

break backward compatibility because the contractual behavior of the memory did not

change: The contents of the memory remain valid and the program is still free to access it at

any time. The new behavior is that unlocking unlocked memory also takes it out of the

process’s working set, so that it becomes a prime candidate for being paged out and used to

satisfy another memory allocation.

The fact that it preserved contractual behavior means that you could scatter Virtual‐

Unlock calls randomly throughout the program and have no effect on correctness. It might

run slower (or faster), but it will still run.

Around the Windows 2000 era, the MEM_RESET flag was added to VirtualAlloc . If you

pass this flag, this tells the memory manager that the memory in question is no longer

interesting to your program, and the memory manager is free to discard it without saving the

contents. The memory itself remains accessible to the program, and doing so before the

https://devblogs.microsoft.com/oldnewthing/20170113-00/?p=95185
https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933

2/4

memory gets discarded will read the old values. On the other hand, if the memory manager

decides that it needs to evict the memory (in order to satisfy a memory request elsewhere), it

will throw away the contents without saving it, and then turn the page into a demand-zero-

initialized page. Later, if your program tries to access the memory, it will see a page full of

zeroes.

Windows 8 added the MEM_RESET_UNDO flag which says, “Hey, um, I changed my mind. I

don’t want you to discard the contents of the memory after all.” If the memory hasn’t yet

been discarded, then it is “rescued” and behaves like normal memory again. But if the

memory has already been discarded, then the memory manager will say, “Sorry, too late.”

And then at some point, I don’t know exactly when, my colleague Adrian added code to check

if a page of memory is all zeroes before paging it out, and turning it into a demand-zero-

initialized page if so. So another way to say that you are not interested in a page of memory is

to explicitly zero it. That causes it to turn into a demand-zero-initialized page at page-out

time, which avoids the I/O of writing a page full of zeroes to disk. This is another one of those

things that has no effect on the programming model; it’s just an optimization. If you are

running on a system that doesn’t perform this optimization, everything still behaves the same

as before, just a little slower.

Note that writing the zeroes to the page does have its own side effects. (Well, aside from the

obvious side effect of, y’know, filling the page with zeroes.) Writing to the page will set both

the Dirty and Accessed bits in the page table, which will bring it into the process’s working

set, and therefore will reduce its likelihood of being selected for eviction. In other words,

zeroing out the page “resets the clock” on the eviction calendar. Therefore, if you’re going to

do this, do it as soon as you’re done with the memory.

In Windows 8.1 we got the function OfferVirtualMemory which mixes in a few new

wrinkles. First of all, when you call OfferVirtualMemory , you pass a flag that says how

much you don’t care about this memory: You can say that you totally don’t care, you mostly

don’t care, you sort of don’t care, or you have no opinion on the concept of caring.

Okay, formally, what you’re doing is saying how to prioritize the memory for discarding. At

one extreme, you can make it a prime candidate for discarding. At the other extreme, you can

say, “No special priority here. Just prioritize it according to the standard rules, as if it were

plain old regular process memory.”

The other wrinkle to the OfferVirtualMemory function is that once you offer the memory,

it is no longer accessible to your program. Trying to access memory that has been offered will

take an access violation.

If you later decide that you want the memory back, you can call ReclaimVirtualMemory ,

which will try to bring the memory back into your process. If it fails, then the contents are

garbage.

3/4

There’s also a companion function DiscardVirtualMemory which forces an immediate

discard and leaves the page contents undefined. It’s the equivalent of OfferVirtual‐

Memory , and then calling ReclaimVirtualMemory , and forcing the reclaim to fail.

Okay, so here we go with the table.

VirtualFree +

MEM_RELEASE

VirtualFree +

MEM_DECOMMIT

Virtual-
Unlock

VirtualAlloc
+
MEM_RESET

Zero-
Memory

Is address
space still
reserved?

N Y Y Y Y

Is memory
accessible?

N N Y Y Y

Is memory
removed
from
working set?

Y Y Y N¹ N

Can control
eviction
priority?

N N N N N

Are previous
contents
recoverable?

N N Y Y until
eviction

N

Contents if
recovery
failed

N/A N/A N/A Zeroes Zeroes

Bonus chatter: The flip side of discarding memory is prefetching it. I’ve discussed the

PrefetchVirtualMemory before, so I’ll leave it at a mention this time. (And here’s a non-

mention.)

¹ The fact that MEM_RESET does not remove the page from the working set is not actually

mentioned in the documentation for the MEM_RESET flag. Instead, it’s mentioned in the

documentation for the OfferVirtualMemory function, and in a sort of backhanded way:

Note that offering and reclaiming virtual memory is similar to using the MEM_RESET and
MEM_RESET_UNDO memory allocation flags, except that OfferVirtualMemory removes
the memory from the process working set and restricts access to the offered pages until they are
reclaimed.

https://blogs.msdn.microsoft.com/oldnewthing/20160225-00/?p=93091
https://blogs.msdn.microsoft.com/oldnewthing/20120601-00/?p=7483

4/4

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

