
1/3

January 10, 2017

Applying a permutation to a vector, part 5
devblogs.microsoft.com/oldnewthing/20170110-00

Raymond Chen

Our apply_permutation function assumes that the integers form a valid permutation. Let’s

add error checking.

There are two ways the integers could fail to be a permutation: One is that the collection

includes a value that is out of range. The other problem case is that all the values are in

range, but a value appears more than once. We can detect that when we encounter a single-

element cycle when we expected a longer cycle. (Another way of looking at it is that we detect

the error when we discover that we’re about to move an item for the second time, because the

permutation application algorithm is supposed to move each item only once.)

template<typename Iter1, typename Iter2>

void

apply_permutation(

 Iter1 first,

 Iter1 last,

 Iter2 indices)

{

using T = typename std::iterator_traits<Iter1>::value_type;

using Diff = typename std::iterator_traits<Iter2>::value_type;

Diff length = std::distance(first, last);

for (Diff i = 0; i < length; i++) {

 Diff current = i;

 while (i != indices[current]) {

 Diff next = indices[current];

 if (next < 0 || next >= length) {

 throw std::range_error("Invalid index in permutation");

 }

 if (next == current) {

 throw std::range_error("Not a permutation");

 }

 swap(first[current], first[next]);

 indices[current] = current;

 current = next;

 }

 indices[current] = current;

}
}

https://devblogs.microsoft.com/oldnewthing/20170110-00/?p=95155
https://devblogs.microsoft.com/oldnewthing/

2/3

(I added the typename keyword at the suggestion of commenter ildjarn. And I used

std::distance to calculate the distance between two iterators. The second change was not

technically necessary because std::distance is defined as subtraction when the iterators

are random-access, but if you’re going to go with the standard library, you may as well go all

the way, right?)

I switched to the swapping version of the algorithm because that allows me to ensure a useful

exit condition in the case of exception: If an exception occurs, the elements in [first,

last) have been permuted in an unspecified manner. Even though the resulting order is

unspecified, you at least know that no items were lost. It’s the same set of items, just in some

other order. The indices, on the other hand, are left in an unspecified state. They won’t be a

permutation of the original indices.

But wait, we can even restore the indices to a permutation of their former selves:¹ We can

take the duplicate index and drop it back into indices[i] . That entry optimistically was

set to the value we expected to find when we reached the end of the cycle. If we never find

that value, then we can put the value we actually found into that slot, thereby correcting our

optimistic assumption.

template<typename Iter1, typename Iter2>

void

apply_permutation(

 Iter1 first,

 Iter1 last,

 Iter2 indices)

{

using T = typename std::iterator_traits<Iter1>::value_type;

using Diff = typename std::iterator_traits<Iter2>::value_type;

Diff length = std::distance(first, last);

for (Diff i = 0; i < length; i++) {

 Diff current = i;

 while (i != indices[current]) {

 Diff next = indices[current];

 if (next < 0 || next >= length) {

 indices[i] = next;

 throw std::range_error("Invalid index in permutation");

 }

 if (next == current) {

 indices[i] = next;

 throw std::range_error("Not a permutation");

 }

 swap(first[current], first[next]);

 indices[current] = current;

 current = next;

 }

 indices[current] = current;

}
}

3/3

¹ This is valuable because it improves post-mortem debuggability: You can inspect the

indices to look for the out-of-range or duplicate index.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

