
1/3

January 4, 2017

Applying a permutation to a vector, part 3
devblogs.microsoft.com/oldnewthing/20170104-00

Raymond Chen

We spent the last two days looking at the apply_permutation function and arguing pros

and cons of various implementation choices. Today’s we’re going to look at generalization.

One of the things you are taught in mathematics is that after you’ve proved something, you

should try to strengthen the conclusion and weaken the hypotheses. Can we apply that

principle here?

I don’t see much that can be done to strengthen the conclusion, but I see a way to weak the

hypotheses: The inputs don’t actually have to be vectors. Anything that supports random

access will do. So let’s use a random access iterator.

And the indices don’t have to be integers. Anything that can be used to index the random

access iterator will do. So let’s not require to to be an integer; we’ll take whatever it is.

https://devblogs.microsoft.com/oldnewthing/20170104-00/?p=95115

2/3

template<typename Iter1, typename Iter2>

void

apply_permutation(

 Iter1 first,

 Iter1 last,

 Iter2 indices)

{

using T = std::iterator_traits<Iter1>::value_type;

using Diff = std::iterator_traits<Iter2>::value_type;

Diff length = last - first;

for (Diff i = 0; i < length; i++) {

 Diff current = i;

 if (i != indices[current]) {

 T t{std::move(first[i])};

 while (i != indices[current]) {

 Diff next = indices[current];

 first[current] = std::move(first[next]);

 indices[current] = current;

 current = next;

 }

 first[current] = std::move(t);

 indices[current] = current;

 }

}
}

Note that we used std::iterator_traits to determine the appropriate types for the

indices and the underlying type. This is significant when the iterator returns a proxy type

(such as the infamous vector<bool>).

Another observation is that the indices don’t have to be in the range [0, N − 1]; as long as

we can map the values into that range. But we don’t need to generalize that, because that can

already be generalized in another way: By creating a custom iterator whose * operator

returns a proxy object that does the conversion.

Okay, I think I’ve run out of things to write about this apply_permutation function. But

we’ll use it later.

Exercise: Write an apply_inverse_permutation which applies the inverse of the

specified permutation: Instead of each element of the indices telling you where the item

comes from, it specifies where the item goes to. In other words, if v is a copy of the original

vector and v2 is a copy of the result vector, then v2[indices[i]] = v[i] .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

