
1/3

December 19, 2016

Why can’t VarDateFromStr parse back a Hungarian date
that was generated by VarBstrFromDate?

devblogs.microsoft.com/oldnewthing/20161219-00

Raymond Chen

A customer liaison reported a problem with date parsing.

Ugh, date parsing.

The customer is receiving date information from a scanner that they want to parse. They are
using the COleDateTime::ParseDateTime  method. The customer reports that clients in
Hungary (locale 1038) are unable to parse dates. The call to COleDateTime::ParseDate‐
Time  fails with false . That method internally uses VarDateFromStr , and calling Var‐
DateFromStr  directly fails with the error DISP_E_TYPEMISMATCH .

This problem is observed only for Hungarian.

The customer included a demonstration program that calls methods on COleDateTime , but

I’ve stripped away the wrapper below, so we can focus on the problem better.

LCID hungarian = MAKELANGID(LANG_HUNGARIAN, SUBLANG_HUNGARIAN_HUNGARY);

DATE date = ...; // something

BSTR str;

hr = VarBstrFromDate(date, hungarian, VAR_DATEVALUEONLY, &str);

// The call to VarBstrFromDate succeeds and returns something like

// "2010. 12. 05". Now let's try to parse it back.


hr = VarDateFromStr(str, hungarian, VAR_DATEVALUEONLY, &date);

// The attempt to parse back to a date fails with DISP_E_TYPEMISMATCH.


The customer noted that this change in behavior was relatively recent.

The reason is that the localization team in Windows 10 made a change to the date formats for

Hungarian. In earlier versions of Windows, the call to VarBstrFromDate  produced

"2010.12.05" . Notice the difference?

The date separator changed from a period to a period followed by a space.

https://devblogs.microsoft.com/oldnewthing/20161219-00/?p=94965


2/3

This highlights that culture data is not stable. Any code that generates Hungarian-formatted

dates will produce different results on Windows 10 compared to earlier versions of Windows.

Of course, one should also note that the date formatting preferences can also be customized

by the user at any time, so the statement is even stronger: Any code that generates locale-

sensitive formatted dates may produce different results at any time, even within a single run

of the program.

So if your goal is to format the date as a string, with the intention of parsing it back, then you

don’t want to use anything that is locale-sensitive. Instead, use a locale-insensitive format,

such as ISO 8601.

The customer said that they were getting the information from a scanner, but it wasn’t clear

where the scanner was getting it from.

If this is a timestamp generated by the scanner itself, then they should try to configure the

scanner to generate timestamps in a locale-insensitive format.

If the timestamp is coming from the document being scanned, then you need to work out

who is generating the document. If the document was generated by the same program that is

trying to parse the result back (which the sample code seems to be suggesting), then you

should fix the program that generates the document so it uses a locale-insensitive format. For

human readability, you could have it generate a locale-sensitive version of the date next to

the locale-invariant version. On the other hand, if the document was generated by an external

source, then you may want to implement a custom parser that handles the date format that

the external source uses.

And if you don’t know what date format the external source is using, then you’re kind of

stuck. After all, a date of the form 12-05-2010  is ambiguous. It might be generated by

somebody whose locale settings specify a date format of MM-DD-YYYY , or somebody whose

locale settings specify a date format of DD-MM-YYYY .

Okay, so we’ve addressed the customer’s problem of not being able to round-trip a date-to-

string-to-date conversion. But why specifically does changing the date separator from

“period” to “period and space” cause VarDateFromStr  to be unable to parse back a string

that it generated itself?

The string 2010. 12. 05.  parses back like this:

"2010"  is a year, no problem there.

". "  is a period followed by a space, no problem there.

"12"  is a month, no problem there.

". "  is a period followed by a space, no problem there.

"05"  is a day, no problem there.

https://blogs.msdn.microsoft.com/shawnste/2005/04/05/culture-data-shouldnt-be-considered-stable-except-for-invariant/


3/3

"."  is a period not followed by a space, which does not match the date separator, so

this parse is rejected.

Next, a special-case rule for "."  kicks in and says, “Okay, well, if normal parsing rules

failed, but I see a period after a complete date, then treat it as a time separator.”

And then parsing fails, because a time separator is not allowed due to the VAR_DATE‐

VALUEONLY  flag.

There is also some special-case code for Hungarian trailing period, but that code path is no

longer being hit, probably because of the change from a one-character date separator to a

two-character date separator.

It turns out that the date parsing code has a ton of special-case rules for various languages.

(I’m looking at you, Polish, with your genitive month forms.)

Now it looks like it needs a ton plus one.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

