
1/1

December 15, 2016

How bad is it to delay closing a thread handle for a long
time after the thread has exited?

devblogs.microsoft.com/oldnewthing/20161215-00

Raymond Chen

A customer has a component that creates a thread with CreateThread in order to do

something, and eventually that thread exits normally. The code hangs onto the thread handle

for the lifetime of the component, because the component wants to wait until the worker

thread has fully exited before it will shut down. The component eventually closes the thread

handle, but it may take a very long time before the handle gets closed.

The customer’s question was basically, “How bad is it to delay closing a thread handle for a

long time after the thread has exited?” They were concerned that failing to close the handle

would have a noticeable impact upon the host process, like leaving a megabyte of memory

reserved for the thread’s stack.

On the other hand, if the impact is de minimis, then the customer would rather not add

complexity and tinker with code that has been working just fine so far.

Fortunately, the answer is, “It’s not that bad.” When the thread exits, nearly all of its

resources are released. There may be some straggling resources like a (now-empty) data

structure to keep track of the outstanding I/O for the thread, and data members to record the

thread’s exit code, thread times, security descriptor, processor affinity, and other

miscellaneous information.

But it’s not a significant amount of extra data in the grand scheme of things if you’re going to

have only one of these “long-lived thread handles” per process. Just don’t make it a habit.

(Now, if you’re going to have thousands of them, we may need to talk.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20161215-00/?p=94945
https://en.wikipedia.org/wiki/De_minimis
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

