
1/3

December 5, 2016

The case of the unexpected ERROR_ACCESS_DENIED
when calling MapViewOfFile

devblogs.microsoft.com/oldnewthing/20161205-00

Raymond Chen

A customer was trying to figure out how to use shared memory, but even their simplest

program couldn’t work. The customer shared their code and asked for help.

The first process creates a named file mapping object backed by the page file. The second

process opens the file mapping object by name, and then maps a view of that file mapping

object. But the attempt to map the view always fails with ERROR_ACCESS_DENIED . The file

mapping object was created by the first process as read/write, and it was opened by the

second process as read/write. The two processes are running in the same session as the same

user. And yet, the second process can’t get access. What’s wrong?

To simplify presentation, error checking has been deleted. Instead, we will describe what

happened with comments.

https://devblogs.microsoft.com/oldnewthing/20161205-00/?p=94855

2/3

// code in italics is wrong

//
// Program 1

#include <windows.h>

int main(int, char**)

{

// This succeeds with a non-null handle.

HANDLE fileMapping = CreateFileMapping(

 INVALID_HANDLE_VALUE, // backed by page file

 nullptr, // default security

 PAGE_READWRITE, // read-write access

 0, // high part of size

 65536, // low part of size

 L"Local\\FileMappingTest"); // name

// This succeeds with a non-null pointer.

void* view = MapViewOfFile(

 fileMapping,

 FILE_MAP_READ | FILE_MAP_WRITE, // desired access

 0, 0, // file offset zero

 0); // map the whole thing

 Sleep(5000); // pause to let user run second process

 UnmapViewOfFile(view);

 CloseHandle(fileMapping);

 return 0;

}

// Program 2

#include <windows.h>

int main(int, char**)

{

// This succeeds with a non-null handle.

HANDLE fileMapping = OpenFileMapping(

 PAGE_READWRITE, // read-write access

 FALSE, // don't inherit this handle

 L"Local\\FileMappingTest"); // name

// This fails with a null pointer.

// GetLastError() returns ERROR_ACCESS_DENIED.

void* view = MapViewOfFile(

 fileMapping,

 FILE_MAP_READ | FILE_MAP_WRITE, // desired access

 0, 0, // file offset zero

 0); // map the whole thing

 UnmapViewOfFile(view);

3/3

 CloseHandle(fileMapping);

 return 0;

}

The customer added that the second process successfully opened the file mapping object, so

presumably the handle does have read/write access. Otherwise, the OpenFileMapping

would have failed with ERROR_ACCESS_DENIED right away, rather than waiting for the Map‐

ViewOfFile .

Study these programs and see if you can find the problem.

(Time passes.)

The problem is that the first parameter to OpenFileMapping is not supposed to be a

PAGE_* value. It’s supposed to be a FILE_MAP_* value. This is easily overlooked because

you are tempted to just do a copy/paste of the CreateFileMapping call’s parameters, and

just delete the parameters related specifically to creation, like file size and security

descriptor.

However, it is a common¹ pattern that Create functions return a handle with full access

and do not have an explicit access mask parameter, whereas Open functions accept an

access mask parameter that controls what level of access the returned handle has.

The numeric value of PAGE_READWRITE is 4, which happens to match the numeric value of

FILE_MAP_READ . Therefore, the second program successfully opened the file mapping for

read, but when it tried to map it for read and write, it got ERROR_ACCESS_DENIED because

it’s trying to obtain a mapping for writing, even though the mapping was opened only for

read.

This is one of the nasty pitfalls of using plain old integers for flags. There’s no type safety:

Integers look the same.

¹ Note that the pattern is common but not not universal. The most notable exception is

CreateFile , which takes an explicit access mask. But if you think about it some more,

CreateFile is an open-like function, because if the file already exists, CreateFile opens

a handle to it, and it uses the requested access mask to evaluate whether your attempt to

open that handle will succeed.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

