
1/3

November 23, 2016

Lock free many-producer/single-consumer patterns: A
work queue of identical non-coalescable events

devblogs.microsoft.com/oldnewthing/20161123-00

Raymond Chen

Onward with our miniseries on lock-free many-producer/single-consumer patterns. Today,

we’re going to look at the case where you have a work queue where there can be multiple

work items, and you need to perform them all, but each item is identical.

For example, you may have a Buy It button. Each time the user clicks the button, you want to

run a transaction. But each button press is equivalent; all that’s important is the number of

times the user pushed the button.

Okay, that’s not a very good example, but it’ll have to do.

One way of doing this is with a semaphore, where the number of tokens in the semaphore is

the number of work items left to be done. But let’s stick with our current pattern where the

producers need to manually wake the consumer, say with a message, and we want to

minimize the number of times we need to perform the wake ritual.

https://devblogs.microsoft.com/oldnewthing/20161123-00/?p=94766

2/3

LONG WorkCount;

void RequestWork()

{

if (InterlockedIncrement(&WorkCount) == 1) {

 // You provide the WakeConsumer() function.

 WakeConsumer();

}
}

// You call this function when the consumer receives the

// signal raised by WakeConsumer().

void ConsumeWork()

{

while (InterlockedDecrementToZero(&WorkCount)) {

 DoSomeWork();

}
}

bool InterlockedDecrementToZero(LONG volatile* value)

{

LONG original, result;

do {

 original = *value;

 if (original == 0) return false;

 result = original - 1;

} while (InterlockedCompareExchange(value, result,

 original) != original);

return true;

}

The InterlockedDecrementToZero function follows the pattern for building complex

interlocked operations, in this case, decrementing a number, but not decrementing it below

zero. We check if the value is zero; if so, then stop and return false . Otherwise, try to swap

it with the value one less than the current value. If that fails, then it means that another

thread changed the WorkCount while we were busy thinking, so we start over. If we

successfully decremented, then return true .

The WorkCount variable remembers how much work there is for the consumer to do. When

the first piece of work arrives, we wake the consumer, and the consumer keeps draining the

work until it’s all done.

Remember, there is only one consumer, so if WakeConsumer is called while ConsumeWork

is still running, the wake will not start a new consumer immediately. It will wait for the

existing ConsumeWork to complete before starting a new ConsumeWork .

Although this specific pattern may not be all that interesting, it can be viewed as a building

block on top of which other patterns are built. We’ll look at one such next time.

https://blogs.msdn.microsoft.com/oldnewthing/20040915-00/?p=37863

3/3

Exercise: Why couldn’t the InterlockedDecrementToZero function have been written

like this?

// Code in italics is wrong.

LONG InterlockedDecrementToZero(LONG volatile* value)

{

LONG original = *value;

if (original == 0) return false;

InterlockedDecrement(value);

return true;

}

Bonus chatter: We could have avoided having to write the InterlockedDecrementTo‐

Zero by writing this instead: void ConsumeWork() { LONG count =

InterlockedExchange(&WorkCount); for (LONG i = 0; i < count; i++) { DoSomeWork(); } }

Discuss.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

