
1/4

October 24, 2016

Why is Identical COMDAT Folding called Identical
COMDAT Folding?

devblogs.microsoft.com/oldnewthing/20161024-00

Raymond Chen

We saw a while ago that the linker will recognize that two functions consist of the same code

sequence and will use the same bytes to represent both functions, a process known as

identical COMDAT folding. But why is it called identical COMDAT folding?

COMDAT is short for “common data”, a feature of the FORTRAN programming language.

For those of you who need some brushing up on FORTRAN: Here’s a crash course in

common data.

In FORTRAN 77, if you want to share variables between functions and subroutines, you put

them in a so-called “common data block”, usually shortened to just “common block”. For

example, here are two FORTRAN subroutines that share a variable called LAST :

https://devblogs.microsoft.com/oldnewthing/20161024-00/?p=94575
https://devblogs.microsoft.com/oldnewthing/

2/4

C THE SETLAST SUBROUTINE TAKES ITS

C PARAMETER AND SAVES IT IN THE

C COMMON VARIABLE "LAST"

 SUBROUTINE SETLAST(I)

C DECLARE THE DATA TYPE OF THE PARAMETER "I"

C AS INTEGER. THIS IS TECHNICALLY NOT NECESSARY,

C BECAUSE VARIABLES WHOSE NAMES BEGIN WITH THE

C LETTERS I THROUGH N DEFAULT TO INTEGER.

 INTEGER I

C DECLARE A VARIABLE CALLED LAST AND

C PUT IT IN A COMMON BLOCK CALLED /LASTV/

 INTEGER LAST

 COMMON /LASTV/ LAST

C OKAY, HERE WE GO. SAVE THE VALUE.

 LAST=I

 END

C THE GETLAST SUBROUTINE RETURNS THE

C VALUE SET BY THE MOST RECENT CALL TO

C THE SETLAST SUBROUTINE.

 INTEGER FUNCTION GETLAST()

C DECLARE A VARIABLE CALLED LAST AND

C PUT IT IN A COMMON BLOCK CALLED /LASTV/

 INTEGER LAST

 COMMON /LASTV/ LAST

C RETURN THE VALUE IN "LAST". THIS VALUE

C WAS PUT THERE BY THE SETLAST SUBROUTINE.

 GETLAST = LAST

 END

(Modern FORTRAN supports lowercase, but I grew up in the days before lowercase was

invented. Writing FORTRAN code in lowercase just looks wrong to me.)

Both SETLAST and GETLAST declare a variable called LAST and put it in a common block

named LASTV . The compiler matches up all common blocks with the same name and aliases

them together, so that they all refer to the same block of memory.

You can put multiple variables into a common block by separating them with commas.

3/4

Note that it is conventional to give the variables in a common block the same name each time

they occur. But there’s no requirement that they do. You can give the variables different

names each time you declare the common block:

 SUBROUTINE SETLAST(I)

 INTEGER I

 INTEGER FRED

 COMMON /LASTV/ FRED

 FRED=I

 END

 INTEGER FUNCTION GETLAST()

 INTEGER BARNEY

 COMMON /LASTV/ BARNEY

 GETLAST = BARNEY

 END

This block of code is functionally equivalent to the previous one. Here, the SETLAST

subroutine calls the sole variable in the block “ FRED “, whereas the GETLAST function calls

it “ BARNEY “. This is perfectly legal, albeit strange.

You aren’t even required to match up the data types, as long as the total size of the common

block stays the same. For example, you might say

 INTEGER*2 A

 INTEGER*2 B

 COMMON /FOURBYTES/ A, B

in one function, declaring two two-byte integers in a common block called FOURBYTES , and

then in a different function, declare it like this:

 INTEGER*4 I

 COMMON /FOURBYTES/ I

The two common blocks are four bytes long, so this is perfectly legal. Of course, the results

depend on the endianness of the processor.

Okay, so anyway, FORTRAN had these weird things called “common blocks” which are used

to get multiple functions to share a chunk of memory. I’m guessing that these things are what

the COMDAT object file segments were originally intended for. The rule that normally

applies to COMDAT sections is that if the linker sees more than one COMDAT section with

the same name, it will keep one of them and throw away the rest. This is why it’s important

that all common blocks have the same size: You don’t know which one the linker is going to

use!

The C++ language introduced places where the compiler may end up emitting the same code

multiple times, for example, vtables and non-inline versions of inline functions. The compiler

can use these old FORTRAN COMDAT segments to hold those things, and rely on the linker

http://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/6n33n7fcm/index.html

4/4

to keep only one copy. (Note that the linker doesn’t validate that the duplicates are identical.

Yet another reason why the C++ language requires that inline functions be identically-

defined in all translation units.)

And finally we get to identical COMDAT folding.

The idea is to put not just inline functions and vtables in COMDAT segments. Let’s just put

everything into COMDAT segments. And then let’s tell the linker, “Hey, if you see two

COMDAT code segments that are byte-for-byte identical, then go ahead and treat them as if

they were the same thing.”

That’s how we got to the name “identical COMDAT folding”. We are taking COMDATs,

looking for those which are identical, and collapsing (folding) them together.

Bonus chatter: I pulled a fast one in this article. Next week, I’ll come back and unwind it a

little.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20161031-00/?p=94605
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

