
1/2

October 20, 2016

Using DuplicateHandle to help manage the ownership of
kernel handles

devblogs.microsoft.com/oldnewthing/20161020-00

Raymond Chen

A customer was using a third party I/O library that also gave you access to the underlying

HANDLE , in case you needed it. The customer needed that underlying HANDLE so it could

pass it to _open_osfhandle() and get a C runtime file descriptor, which could then be used

by other C runtime functions to operate on the I/O object.

Everything was great until it came time to close the I/O object, because both the I/O library

and the C runtime tried to close the handle. and that resulted in assertion failures due to

invalid handles.

The problem here is that both the I/O library and the C runtime think that they are

responsible for closing the handle. The I/O library wants to close the handle because it

created the handle in the first place, and the special method to obtain that underlying

HANDLE wasn’t transferring ownership of the handle to you; it merely gave you a handle that

you could borrow. On the other hand, the _open_osfhandle() function will close the

handle when the file descriptor is closed, because the function assumes that you’re giving it

not only the handle, but also the responsibility to close the handle.

Neither library has a way to change the handle semantics. There isn’t a way to tell the I/O

library or the C runtime, “Hey, don’t close that handle.”

The solution here is to use the DuplicateHandle function to create a brand new handle

that refers to the same underlying kernel object. You can then pass the duplicate to

_open_osfhandle() . Both the I/O library and the C runtime library will close their

respective handles. Since each handle is closed exactly once, balance is restored to the

universe.

Exercise (easy): Suppose you have a C runtime file descriptor, and you want to take the

underlying kernel handle and give it to another library, which will close the handle you give

it. How do you manage this without running into a double-close bug?

https://devblogs.microsoft.com/oldnewthing/20161020-00/?p=94555
https://msdn.microsoft.com/en-us/library/bdts1c9x.aspx

2/2

Exercise (slightly harder): Suppose your program needs more than 2048 C runtime file

descriptors, which is more than _setmaxstdio accepts. Fortunately, your program doesn’t

actively use all of the descriptors at the same time, so you’re thinking that you can virtualize

the file descriptors by “paging them in” and “paging them out” from underlying kernel

handles. How would you do this?

Raymond Chen

Follow

https://msdn.microsoft.com/en-us/library/6e3b887c.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

