
1/2

September 30, 2016

When are global objects constructed and destructed by
Visual C++?, redux

devblogs.microsoft.com/oldnewthing/20160930-00

Raymond Chen

Today we’re going to make some clarifications to this table, which came from an earlier

article:

When does it
run? Constructor Destructor

Global
object in
EXE

C runtime startup code C runtime DLL hired lackey

Global
object in
DLL

C runtime
DLL_PROCESS_ATTACH prior to
DllMain

C runtime DLL_PROCESS_DETACH
after DllMain returns

It turns out that the upper right corner of the diagram actually splits into two cases. The table

lists what happens if the process terminates by calling ExitProcess . The thing that makes

termination with ExitProcess interesting is that the first (and only) time the C runtime

library learns about it is when the C runtime library itself receives its DLL_PROCESS_DETACH

notification, and we saw last time that by the time this notification arrives, it could very well

already be too late.

The escape here is to exit the program not by calling ExitProcess but rather by calling the

C runtime exit function. When you do that, the C runtime gets control (by virtue of the fact

that you explicitly called it), so it can run down your executable’s global objects right away,

before calling the operating system’s ExitProcess function. That way, the global objects

are run down while all of the dependent DLLs are still in memory.

Let’s update our table:

When does it
run?

Constructor Destructor

https://devblogs.microsoft.com/oldnewthing/20160930-00/?p=94425
https://blogs.msdn.microsoft.com/oldnewthing/20141017-00/?p=43823
https://devblogs.microsoft.com/oldnewthing/

2/2

Ends with
exit()

Ends with
ExitProcess()

Global
object in
EXE

C runtime startup code Prior to
ExitProcess

C runtime DLL hired
lackey

Global
object in
DLL

C runtime
DLL_PROCESS_ATTACH prior to
DllMain

C runtime DLL_PROCESS_DETACH
after DllMain returns

The C and C++ language standards say nothing about what happens if you exit a process by

calling some operating system low-level process termination function. Which makes sense,

because the C and C++ language standards deal with the standard, not with operating

system-specific stuff. I believe that more recent versions of the C runtime library take

advantage of this and say, “You know what? If you exit the process by calling ExitProcess ,

then I’m simply not going to destruct anything. Serves you right for invoking behavior not

covered by the standard.” In those cases, the upper right corner changes from “C runtime

DLL hired lackey” to “never”.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

