
1/2

September 29, 2016

The lackey catastrophe
devblogs.microsoft.com/oldnewthing/20160929-00

Raymond Chen

We encountered a real problem with global object destruction in Explorer. The object in

question was an RAII container for a graphics object, so its destructor destroyed the graphics

object. But the call to destroy the object was crashing.

GDI32!IS_INDEX_IN_USER_SHARED_ARRAY+0x17

GDI32!HANDLE_TO_INDEX+0x1a

GDI32!DeleteObject+0x2a

explorer!CBitmap::~CBitmap+0x20

msvcrt!doexit+0xb6

msvcrt!_cexit+0xb

msvcrt!__CRTDLL_INIT+0x9f

ntdll!LdrxCallInitRoutine+0x16

ntdll!LdrpCallInitRoutine+0x43

ntdll!LdrShutdownProcess+0x1c1

ntdll!RtlExitUserProcess+0x96

kernel32!ExitProcess+0x32

explorer!wWinMain+0x4ef

explorer!WinMainCRTStartup+0x151

KERNEL32!BaseThreadInitThunk+0x24

ntdll!__RtlUserThreadStart+0x2b

ntdll!_RtlUserThreadStart+0x1b

What’s going on?

The call to DeleteObject was occurring after GDI32 had already run its

DLL_PROCESS_ATTACH DLL_PROCESS_DETACH . As a result, it was calling into a DLL that

had already uninitialized, so bad things happen.

But wait, how can you call into a DLL that has already uninitialized? The EXE links to the

DLL via a load-time dependency, so the EXE should uninitialize first. But it’s not. Why not?

Recall how global objects are constructed and destructed. If the global object had been in a

DLL, then indeed the loader dependency analysis would have seen that the global object’s

DLL depends upon GDI32 .

https://devblogs.microsoft.com/oldnewthing/20160929-00/?p=94415
https://blogs.msdn.microsoft.com/oldnewthing/20141017-00/?p=43823

2/2

As we saw in the earlier discussion, executables do not have DLL_PROCESS_DETACH . You can

look at the situation in two ways: One interpretation is that the executable has already

stopped running at the point it calls ExitProcess . All that’s left is to shut down the DLLs.

Another interpretation is that the executable is always running (seeing as DLLs run in the

context of a process), so there’s no point trying to wait until the executable has “finished”

because if you did that, you’d be waiting forever.

Anyway, regardless of how you choose to look at the situation, the problem is the same: The

lackey we hired to run down our global objects is running them down too late.

This is a case where the C runtime is doing the best it possibly can, but it’s still not good

enough.

Next time, we’ll look at one possible extrication from this quandary.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

