
1/4

September 12, 2016

How can I have a window that rejects activation but still
receives pointer input?

devblogs.microsoft.com/oldnewthing/20160912-00

Raymond Chen

A customer had a dedicated system with two touch screens. One screen was covered by the

main app window, and the other was covered by a secondary window. They needed focus to

remain on the main app window because reasons.¹

One way of preventing the secondary window from getting focus is to use the WS_EX_NO‐

ACTIVATE extended style. Another way is to disable it. However, these cause the secondary

window to ignore input, but the customer also wanted the user to be able to interact with the

secondary window. Can they have their cake and eat it too?

Let’s start with the new scratch program and make these changes. The first set of changes is

basically the stuff we did in an earlier article to turn the main window into a logging window.

https://devblogs.microsoft.com/oldnewthing/20160912-00/?p=94295
https://blogs.msdn.microsoft.com/oldnewthing/20050422-08/?p=35813
https://blogs.msdn.microsoft.com/oldnewthing/20130606-00/?p=4153

2/4

#include <strsafe.h>

class RootWindow : public Window

{

public:

...

void AppendText(LPCTSTR psz)

{
 ListBox_SetCurSel(m_hwndChild,

 ListBox_AddString(m_hwndChild, psz));

}

void LogMessage(UINT uMsg, WPARAM wParam, LPARAM lParam)

{
 TCHAR szMsg[80];

 StringCchPrintf(szMsg, 80, TEXT("%d\t0x%04x\t%p\t%p"),

 GetTickCount(),

 uMsg,

 wParam,

 lParam);

 AppendText(szMsg);

}
...

};

The logging comes from the side window:

3/4

class SideWindow : public Window

{

public:

SideWindow(RootWindow* prw) : m_prw(prw) {}

virtual LPCTSTR ClassName() { return TEXT("SideWindow"); }

static SideWindow *Create(RootWindow* prw);

protected:

LRESULT HandleMessage(UINT uMsg, WPARAM wParam, LPARAM lParam);

private:

RootWindow* m_prw;

};

LRESULT SideWindow::HandleMessage(

UINT uMsg, WPARAM wParam, LPARAM lParam)

{

switch (uMsg) {

case WM_MOUSEACTIVATE:

 m_prw->LogMessage(uMsg, wParam, lParam);

 return MA_NOACTIVATE;

case WM_MOUSEMOVE:

case WM_LBUTTONDOWN:

case WM_LBUTTONUP:

 m_prw->LogMessage(uMsg, wParam, lParam);

 break;

}

return __super::HandleMessage(uMsg, wParam, lParam);

}

SideWindow *SideWindow::Create(RootWindow* prw)

{

SideWindow *self = new SideWindow(prw);

if (self && self->WinCreateWindow(0,

 TEXT("SideWindow"), WS_OVERLAPPEDWINDOW,

 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,

 NULL, NULL)) {

 return self;

}
delete self;

return NULL;

}

The side window logs selected mouse messages so we can see what’s going on. The

interesting thing is that it responds to the WM_MOUSEACTIVATE with MA_NOACTIVATE ,

which means, “Thanks for your interest in my window, but I decline your offer to activate

me.” Another way to decline activation is to return MA_NOACTIVATEANDEAT , which goes a

step further and says, “Throw away the input that caused you to want to activate this

window.” That’s not what we want today, because we want to keep the input; we simply don’t

want activation.

4/4

Let’s finish up the program before discussing further.

int PASCAL

WinMain(HINSTANCE hinst, HINSTANCE, LPSTR, int nShowCmd)

{

...

 RootWindow *prw = RootWindow::Create();

 if (prw) {

 ShowWindow(prw->GetHWND(), nShowCmd);

 SideWindow *sw = SideWindow::Create(prw);

 ShowWindow(sw->GetHWND(), SW_SHOWNA);

 MSG msg;

 while (GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 }

 ...

}

Okay, run this program, and it will open two windows. (I didn’t bother putting each one on a

separate monitor. You can use your imagination.) While focus is on the main window, use

your finger or moues to click on the second window. Observe that the second window does

not activate, but the logging window shows that it did receive the WM_LBUTTONDOWN =

0x0201 message. Drag your finger over the window, or drag the mouse, and you’ll see the

WM_MOUSEMOVE = 0x0200 messages, and you’ll get a WM_LBUTTONUP = 0x0202 message

when the pointer goes up.

So there you have it: A window that rejects activation but stil receives touch and mouse input.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

