
1/3

August 23, 2016

WaitOnAddress lets you create a synchronization object
out of any data variable, even a byte

devblogs.microsoft.com/oldnewthing/20160823-00

Raymond Chen

The WaitOnAddress function is a funny little guy. It lets you create a synchronization object

out of 1, 2, 4, or 8 bytes of memory. And you even control the contents of the memory, so the

synchronization object costs you nothing!

Basically, the WaitOnAddress function waits for the contents of a block of memory to

change. You give it a memory buffer and an “undesirable value”, and the function waits until

the buffer’s contents are something different from the undesirable value. (Of course, if the

memory buffer already contains something different from the undesirable value, then the

function returns immediately.)

You can accomplish the same thing with a spinloop, but WaitOnAddress puts the thread

into a wait state so that it doesn’t burn CPU while waiting.

Wow, this sounds amazing. But like they say, there’s no such thing as a free lunch. For one

thing, you have to give WaitOnAddress a little help when you actually change the value.

After you update the value atomically, you need to call either WakeByAddressSingle if you

want to wake up one waiting thread, or WakeByAddressAll if you want to wake up all

waiting threads.

Note that everything must stay within a single process. You cannot wait on an address in one

process and wake it in another. (Not that it would make much sense anyway, seeing as

processes have separate address spaces.)

Another wrinkle is that the WaitOnAddress function might return spuriously; i.e., it may

return even if the address being watched still contains the undesirable value.

Those who are familiar with condition variables are well aware of the phenomenon of the

spurious wake.¹ Spurious wakes are unavoidable because the thread may be woken due to

the variable’s value changing, but before the thread gets a chance to run, the value changes

https://devblogs.microsoft.com/oldnewthing/20160823-00/?p=94145

2/3

the back to the undesirable value. Therefore, when WaitOnAddress returns, you must check

whether the value still has the undesirable value, and if so, you probably want to go back and

wait again.

(The spurious wake also explains why you need to update the value atomically: If you use a

non-atomic update, then another thread waiting on the address may experience a spurious

wake at exactly the moment you are updating the value, and if you use a non-atomic update,

that thread will see a torn value when it goes to check whether the wait was spurious.)

Here are some pros and cons of WaitOnAddress compared to, say, an event.

Pro: WaitOnAddress doesn’t need to be initialized or destroyed. You don’t have to worry

about leaking memory because you forgot to destroy the synchronization object because

there is nothing to destroy!

Pro: Like critical sections, WaitOnAddress does most of its work in user mode, so if you’re

lucky, you can avoid kernel transitions. (Though in practice, I don’t think this buys you much,

because most of the time, you probably expect WaitOnAddress to actually wait, which

means that you’re paying for a kernel transition anyway.)

Con: Since there is no synchronization object, you cannot ask the threadpool to notify you

when a WaitOnAddress is ready. More generally, you cannot perform a simultaneous wait

on an address and some other synchronization object. This means for example that you can’t

ask MsgWaitForMultipleObjects to wait for a message or on an address.

Con: As noted earlier, you cannot wait on an address in one process and wake it in another. If

you need to synchronize between processes, then you cannot use WaitOnAddress .

Con: Internally, all of the addresses being waited on are kept in a hash table, which means

that the theoretical complexity is linear in the number of pending WaitOnAddress calls,

albeit with a low constant. This is probably not going to be a serious problem in practice

because (1) it’s a lock-free hash table, and (2) you won’t have a huge number of pending

WaitOnAddress calls, since it’s bounded by the number of threads in your process.

Next time, by way of demonstration, we’ll try implementing some existing synchronization

concepts in terms of WaitOnAddress .

¹ Those who worked with Windows 95 device drivers may also observe a similarity between

WaitOnAddress and Windows 95’s BlockOnID , which had very similar semantics,

including the phenomenon of spurious wakes.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

