
1/2

August 17, 2016

On installing a custom unhandled exception filter and
intentionally raising an exception to get its attention

devblogs.microsoft.com/oldnewthing/20160817-00

Raymond Chen

A customer reported that they were seeing inconsistent behavior when they intentionally

raised a Win32 exception and tried to catch it in a custom unhandled exception filter.

#define CUSTOM_EXCEPTION 0xABCDEF01

LONG WINAPI CustomFilter(EXCEPTION_POINTERS* exceptionPointers)

{

if (exceptionPointers->ExceptionRecord

 ->ExceptionCode == CUSTOM_EXCEPTION) {

 return EXCEPTION_CONTINUE_EXECUTION;

}
return EXCEPTION_EXECUTE_HANDLER;

}

void Test()

{

auto previousFilter = SetUnhandledExceptionFilter(CustomFilter);

RaiseException(CUSTOM_EXCEPTION, 0, 0, nullptr);

try {

 RaiseException(CUSTOM_EXCEPTION, 0, 0, nullptr);

 throw (int)0;

 Log("Returned from throw");

} catch (int) {

 Log("Caught");

}
SetUnhandledExceptionFilter(previousFilter);

}

The customer observed a few things.

First, if the Test function was called from inside a window procedure, then the behavior

changed depending on the execution environment, as documented here.

https://devblogs.microsoft.com/oldnewthing/20160817-00/?p=94106
https://msdn.microsoft.com/library/windows/desktop/ms633573(v=vs.85).aspx

2/2

Second, the custom filter was not called at all if the program was running under the

debugger. The documentation for SetUnhandledExceptionFilter says that if the program

is not being debugged, then the custom unhandled exception filter is called, but it doesn’t say

what happens if the program is being debugged.

The customer’s question was “What is the expected behavior if the program is being

debugged?”

First, let’s answer the question: The expected behavior if the program is being debugged is

that the custom unhandled exception filter is ignored.¹

But let’s step back and look at the bigger picture here.

This program is violating one of the cardinal rules of Win32 exceptions: Exceptions must not

cross foreign stack frames. If you are going to raise an exception in one place and handle it in

another, then every stack frame that the exception travels through must be aware of your

little game. After all, if they aren’t aware of your game, you don’t know what they will do

when they see your custom exception!

The unhandled exception filter runs as the very last exception filter, which means that before

control reaches the unhandled exception filter, it must go through every single active stack on

your thread, including the stack frames outside your control, like the ones that set up the call

to the window procedure. So you’ve already left the world of predictable behavior.

¹The intended purpose of the custom unhandled exception filter is to capture additional

program state for post-mortem debugging purposes. If a debugger is connected to the

process, the thinking is that you connected the debugger because you want it to be informed

of the exception and freeze the program so you can, y’know, debug it.

Raymond Chen

Follow

https://msdn.microsoft.com/library/windows/desktop/ms680634(v=vs.85).aspx
https://blogs.msdn.microsoft.com/oldnewthing/20120910-00/?p=6653
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

