
1/2

August 15, 2016

How can I debug a function that has been subjected to
COMDAT folding?

devblogs.microsoft.com/oldnewthing/20160815-00

Raymond Chen

Suppose you want to set a breakpoint on a function, but you find that the function has been

subjected to COMDAT folding, so your attempt to set a breakpoint on the function ends up

setting a breakpoint on some other function, and your breakpoint ends up firing when either

your desired function or the other identical function gets called. How can you get your

breakpoint to fire only on the function you are debugging?

One way to do this is to disable COMDAT folding temporarily and rebuild. Mind you, this

may result in your binary size exploding, but since you’re just debugging, this probably

doesn’t bother you that much. On the other hand, there may be parts of the program that are

relying on COMDAT folding, or it may be hard to find the build setting that controls

COMDAT folding, and you run the risk of forgetting to change the setting back and

accidentally committing a change that disables COMDAT folding!

The easy way is to mutate the function. Add a call to a harmless function like GetTick‐

Count() . Note that the harmless function must be something the compiler can’t optimize

out, so don’t try free(nullptr) because the compiler is allowed to take advantage of the

fact that free(nullptr) is required by the language standard to have no effect and can

consequently optimize the call out entirely.

Then again, if you’re going to mutate the function, you may as well mutate it in a way that

makes debugging easier. For example, you might add

bool breakpoint = false;

void TheFunction()

{

if (breakpoint) DebugBreak();

... rest of function ...

}

Then you can patch the breakpoint variable to true and boom, there’s your breakpoint.

https://devblogs.microsoft.com/oldnewthing/20160815-00/?p=94085
https://devblogs.microsoft.com/oldnewthing/

2/2

If you can’t recompile the binary, then your options are more limited. If the set of callers is

manageable, you could try setting a breakpoint on each of the callers. Or if there is something

in the function that lets you detect which identical function you’re in, you can use that. For

example, maybe the two functions are

class Circle

{

public:

 virtual int GetRadius() { return m_radius; }

private:

 int m_radius;

 int m_xcenter;

 int m_ycenter;

};

class Channel

{

public:

 int GetId() { return m_id; }

private:

 HANDLE m_signal;

 int m_id;

};

Since Circle::GetRadius and Channel::GetId compile to the same code, they will get

COMDAT-folded. But you can still figure out which method you’re in by looking at other

parts of the this pointer. In the example above, you see that Circle has a virtual

method, hence a vtable, so you can use a conditional breakpoint to check whether the vtable

matches.

If you use a boring debugger, it might be something like this:

0:001> bp Circle::GetRadius "j poi(ecx)==0x10014270 r;g"

If you use a fancy debugger, then use your fancy debugger’s conditional breakpoint facility.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

