On the importance of making sure WaitForinputidie
doesn’t think you’re idle, episode 2

B® devblogs.microsoft.com/oldnewthing/20160812-00

August 12, 2016

Raymond Chen

Continuing our DDE micro-series, we’ll look at another customer who was having trouble
getting the shell to recognize their DDE server.

We have a program that supports DDE for legacy reasons. More specifically, we have two
versions of that program, and we support the user installing both of them side by side. To
mediate this uneasy coexistence, we intend to have a “selector” program that registers for all the
file extensions, and the user configures the selector so that the requests are directed at the
specific version of the program the user chooses.

We threw together a quick prototype of the selector, which simply looks up the user’s
preference, and then forwards its command line to the appropriate version. For example, we
register the open verb as ddeexec = selector.exe , and the selector program decides that
(say) the user wants files to open in v1, so the selector runs "C:\Program
Files\Contoso\vil\contoso.exe" .

What we found is that we get There was a problem sending the command to the program. What

are we doing wrong?

Recall that after the shell launches the registered command, the shell calls waitForInput-
Idle , and then when that call returns, the shell goes looking for the DDE server.

The first catch is that waitForInputIdle requires a GUI program. This makes sense
because console programs don’t pump messages, so any such wait would be infinite. What’s
happening is that the shell launches the selector, and then the shell calls waitForInput-
Idle , which returns (with an error), and then the shell goes looking for the DDE server. But
the DDE server isn’t ready yet.

The selector needs to be a GUI program, and it needs to perform a WaitForInputIdle on
the final program, so that it doesn’t go input idle until the actual server goes input idle. (In a
sense, the selector is proxying input idle-ness.)

1/2


https://devblogs.microsoft.com/oldnewthing/20160812-00/?p=94075

The customer tried a quick prototype with a WPF program, but it still didn’t work. I don’t
know for sure, but I suspect that something in the WPF framework is pumping messages
(perhaps due to a cross-thread COM operation) or creating a background thread that goes
input-idle, which causes the entire process to go input-idle before the business logic can
launch the true DDE server.

The customer tried another prototype with a pure Win32 program that launched the true
DDE server, and then used waitForInputIdle to wait for the true DDE server to go idle,
and then exited.

And this worked, sort of.

What the customer found is that they needed to add a Sleep(1000) between launching the
true DDE server and calling waitForInputIdle .Ifthey called waitForInputIdle
immediately after the CreateProcess , then the shell error occurred.

This stumbles across another fine detail of waitForInputIdle : The process must be a GUI
process. And even though the true DDE server is a GUI process, the selector is so fast that it
calls waitForInputIdle before the true DDE server can call into the window manager and
create its message queue, which is what causes the program to be marked as a GUI program.
When this happens, the waitForInputIdle function returns WAIT FAILED .

Therefore, the selector program should check whether waitForInputIdle</code returns
WAIT_FAILED ; if so, it should sleep a little bit and try again. (And
eventually give up.)

Phew.

Please stop using DDE.

Raymond Chen
Follow

2/2


https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

